Attachment W

Groundwater Investigation-Addendum Report

Canberra Brickworks: Groundwater Investigation-Addendum Report

Canberra Brickwork Precinct, Yarralumla, ACT

3002523

For: Land Development Agency

Project Name:		Canberra Brickworks Site Investigation, Yarralumla, ACT				
Internal Reference:		3002523 – Groundwater Addendum Report				
Report prepared for:		Land Development Agency				
REVIEWS AND APPROVAL		S FOR ISSUE				
Revision	Date	Author	Reviewer	Approval		
0	27/10/2016	Ryan O'Leary	Graham Ohmsen	Graham Ohmsen		
1	1/11/2016	Ryan O'Leary	Graham Ohmsen	Mechelle Swanepoel		
2	3/11/2016	Ryan O'Leary	Graham Ohmsen	Mechelle Swanepoel		

Executive Summary

Land Development Agency (LDA) commissioned SMEC Australia Pty Ltd (SMEC) to conduct an environmental site investigation of the Canberra Brickworks to determine the extent and quantity of contamination present at the site. The works involved examination of soil, surface and groundwater. This report is an addendum to the main report for the Canberra Brickworks.

The examination of groundwater involved installation of eight groundwater monitoring wells across the site, which were installed between 13 and 22 September 2016. Wells were installed to depths between 4.575 m bgl and 15.670 m bgl. Surface water samples were collected from three locations from the quarry area on 22 September and groundwater samples collected between 28 September and 17 October 2016.

Surface water was present as an ephemeral water body in the Pit area at the time of sampling. Standing water levels (SWL) ranged between 571.70 m AHD (M-6) to 582.86 m AHD (M-5). Groundwater was not recorded in two wells (M-1 and M-8) at the time of sampling.

The results of the physico-chemical parameters showed that there was an appreciable difference in pH between the surface water samples (3.96-3.99) and those from the groundwater (5.94 and 6.99). The difference in measured pH between the surface water and groundwater samples may be the result of the influence of organic acids derived from the breakdown of organic matter in the surface water body. Other possible factors which may account for the observed difference may include the potential for buffering and control of groundwater pH from the fill material and bedrock.

Other parameters, such as dissolved oxygen and redox potential indicated that both surface water and groundwater were relatively well oxygenated. The temperature of the groundwater exhibited a range of almost 6° C, from 14.4°C (M-5) to 20°C (M-7).

The analytical results for surface water samples indicated that BTEXN, TRH, PAH, OPP, OCP and PCB were below analytical detection limits. Of the metals, only zinc in W-2 ($25 \mu g/L$) and W-3 ($22 \mu g/L$) was found to exceed the NEPM EIL (amended 2013) screening criteria for fresh water. All other metals were either **below** detection limits or **below** the relevant assessment criteria.

The analytical results for the groundwater indicated that several of the COPC, namely TRH, PAH, OCP, OPP and PCB were all **below** the analytical limit of detection. The analysis revealed the presence of benzene above analytical detection limits in two samples, M-2 (1.0 μ g/L) and M-7 (1.1 μ g/L). These detections were below the NEPM EIL (2013) and ANZECC (2000) criteria values of 950 μ g/L.

A number of exceedances for metals were recorded in the groundwater samples. The concentrations of Cd (1.3 μ g/L), Cu (4 μ g/L), Ni (20 μ g/L) and Zn (67 μ g/L) in monitoring well M-2 were found to exceed the respective NEPM (2013) EIL assessment criteria values of 0.2 μ g/L, 1.4 μ g/L, 11 μ g/L and 8 μ g/L, respectively. Zinc was also found to exceed the EIL criteria in M-3 (21 μ g/L) and M-5 (18 μ g/L), whilst copper in M-3 (2 μ g/L) and nickel in M-6 (13 μ g/L) and M-7 (12 μ g/L) also exceeded the criteria. These results are not considered to represent a significant environmental risk.

The detection of metal levels above the NEPM EIL freshwater assessment criteria may be a reflection of natural conditions or may reflect the presence of contaminated material similar to that identified in the surface material from within the kilns, which contained higher concentrations of cadmium and zinc. However, it is recommended that further monitoring should be conducted to determine the long-term trend for these metals.

Furthermore, it is recommended that additional sampling and analysis of the surface and groundwater be conducted, particularly to confirm the presence of benzene in monitoring wells M-2 and M-7. This is considered important, as benzene was not reported in any soil samples and its presence in the groundwater will require further investigation to enable a better understanding of the possible

source(s). It is also recommended that another two wells are constructed down gradient of the identified UST (AEC-7 in the Soil Assessment Report) during the investigation, decommission and removal works.

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1.	INTRODUCTION1
1.1	Preamble1
1.2	Previous Work1
1.3	Objectives1
1.4	Scope of Works1
1.5	Legislative Framework1
1.6	Environmental Standards and Guidelines1
1.7	Report Limitations2
2.	SITE CHARACTERISTICS
2.1	Geology3
2.2	Regional Hydrology and Hydrogeology3
2.3	Contaminants of Potential Concern3
3.	METHOD
3.1	Rationale5
3.2	Monitoring Well Construction5
3.3	Groundwater Well Development6
	3.1.1 Standing Water Levels
3.4	Groundwater Sampling6
3.5	Surface Water7
3.6	Implications and Limitations7
4.	QUALITY ASSURANCE AND QUALITY CONTROL
4.1	QA/QC Summary9
5.	RESULTS
5.1	Field Parameters11
	<i>5.1.1</i> Surface Water
	<i>5.1.2</i> Groundwater
5.2	Analytical Results
	<i>5.2.1</i> Surface Water
	5.2.2 Groundwater
6.	DISCUSSION AND CONCLUSIONS
6.1	Rainfall15
6.2	Conclusions15

7. REFERENCES	17
APPENDIX B – FIGURES	19 <u>8</u>
APPENDIX B - WELL CONSTRUCTION LOGS	19
APPENDIX C – RESULTS TABLES	20
APPENDIX D – LABORATORY REPORTS	21
APPENDIX E – CALIBRATION CERTIFICATES	22
APPENDIX F - WELL DEVELOPMENT AND GROUNDWATER SAMPLING SHEETS	23

1. INTRODUCTION

1.1 Preamble

Land Development Authority (LDA) engaged SMEC Australia Pty Ltd (SMEC) to conduct a Site Investigation (SI) for land parcels comprising the former Canberra Brickworks (the Site), located at Denman Street Yarralumla, ACT. The present investigation was conducted to provide LDA with information on the locations and concentrations of a number of targeted contaminants in soil and groundwater and the lateral and vertical extent of fill material. The information obtained from this investigation will provide a better understanding of the current status of the site and form the basis for a more detailed and targeted detailed site investigation, if required.

1.2 Previous Work

This addendum report compliments the main report 'Canberra Brickworks Site Investigation' submitted to LDA 26 October 2016, as agreed by the auditor (L. Jorstad).

1.3 Objectives

The activities of the groundwater and surface water investigation were conducted as part of the overall site investigation by SMEC between 5 September and 17 October 2016. The objective of the water component of the site investigation was to provide a baseline on the quality of water below the Site to enable an understanding of underlying conditions and make a determination about the suitability of the Site and associated conditions for the proposed end use.

1.4 Scope of Works

To meet the requirements of the SAQP, the following scope of work was undertaken:

- Installation of eight groundwater monitoring wells to a maximum depth of 15.0 m bgl or until refusal
- Development and purging of the wells
- Sampling and analysis for Contaminants of Potential Concern (CoPC)
- Comparison of results against assessment criteria to determine level of risk
- Compilation of this addendum report detailing results and implications.

1.5 Legislative Framework

The overall investigation will be undertaken in general accordance with the following ACT EPA endorsed legislation and guidance

- ACT Government, Environment Protection Act (1997)
- ACT Government, Environment Protection Regulation (2005)
- ACT EPA, Contaminated Sites Environmental Protection Policy (2009)

1.6 Environmental Standards and Guidelines

This report was prepared in general accordance with the requirements of the guidelines endorsed by the ACT Environment Protection Authority (EPA) which includes the following:

• ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality

- National Environment Protection Council National Environment Protection (Assessment of Site Contamination) Measure (1999, amended 2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater
- National Environment Protection Council National Environment Protection (Assessment of Site Contamination) Measure (1999, amended 2013) Schedule B(5a) Ecological Risk Assessment

1.7 Report Limitations

This report was based on the Scope of Work outlined in Section 1.4. SMEC prepared this report in a manner consistent with the normal level of care and expertise exercised by members of the environmental profession.

This report relates only to the objectives stated and does not relate to any other work undertaken for the Client. Site conditions upon which inferences in this report are drawn may change with time and space. The absence of any identified hazardous or toxic materials on the subject property should not be interpreted as a guarantee that such materials do not exist on the Site.

All conclusions regarding the property area are the professional opinions of SMEC, subject to the qualifications in the report. While normal assessments of data reliability have been made, SMEC assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of SMEC, or developments resulting from situations outside the scope of this project.

The client acknowledges that this report is for the exclusive use of Land Development Authority.

2. SITE CHARACTERISTICS

Details pertaining to the characteristics of the site are detailed in the main report Canberra Brickworks Site Investigation, Yarralumla, ACT, dated 24 October 2016. The topics discussed below only pertain to the groundwater and their potential influence.

2.1 Geology

The Geology of Canberra 1:100, 000 Sheet 8287 (1992) shows that the Canberra brickworks is underlain by calcareous and tuffaceous mudstone and siltstone of the Late Silurian Yarralumla Formation. The formation outcrops within and adjacent to the pit area of the site.

2.2 **Regional Hydrology and Hydrogeology**

Review of the 1:100,000 Hydrology of the Australian Capital Territory and Environs (1984) indicated that the groundwater beneath the Site is generally present in fractured rock. The quality tends to be variable and was described as 500 - 1,000 mg/l TDS. The yield was described as approximately 1.0 l/s.

A search of the Environment and Sustainable Development Department (ESDD) Groundwater Bore database indicated that three registered abstraction and one investigation/monitoring groundwater were located within a 2 km radius of the Site. The details of the registered groundwater bores is presented in Table 2.1. No registered groundwater bores were located within the Site.

Bore ID	Purpose	Construction Date	Depth (m)	Water Level
WU36	PRIVATE	Unknown	43	35
WU105	PRIVATE	Unknown		
WU609	PRIVATE	Unknown		
WODEN 3	PRIVATE	Unknown		

Table 2.1 **Groundwater Bore Survey Details**

Contaminants of Potential Concern 2.3

Based on the Site history and background data review, SMEC (in conjunction with the SAQP prepared by AECOM) have identified the following CoPC that may be present in the groundwater and surface water at the site.

Table 2.2 **Contaminants of Potential Concern**

СоРС	Context
Organochlorine Pesticides (OCP), Organophosphorus	OCPs / OPPs are persistent and bio-accumulative in the environment. They were formerly used as pest control for crops, livestock and buildings.
Pesticides (OPP)	As the site was historically used for grazing, there may be OCP / OPPs present in the surface and groundwater
Heavy metals	May be present on Site as a result of historical industrial activity or in imported fill. Some elevated background levels of metals are also known to be present naturally in the environment. There is potential that previous site activities including the Brickworks itself, may have resulted in metals being present of Site.

Total Recoverable Hydrocarbons, benzene, toluene, ethylbenzene, xylene (BTEX)	There are a number of potential sources of hydrocarbon contamination used over the years including heating oil, oils and greases, TRH (BTEXN) associated with the use of fuels and lubricants and former UST are potentially present. In addition, there is also potential for hydrocarbons to be present in imported fill.
Polycyclic Aromatic Hydrocarbons (PAH), Phenols	Derived from partially combusted organic materials, also from coal used as fuel in the kilns and ash buried across the site. May have potentially leached into the groundwater. There is also potential for PAHs and phenols to be present in any imported fill present at the Site.
Polychlorinated biphenyls (PCB)	May be associated with buried wastes from buildings and potential transformers and associated oils as well as imported fill.

3. METHOD

3.1 Rationale

The location and depth of the groundwater monitoring wells was initially determined as part of the SAQP developed by AECOM (2016). The rationale for the number, depth and location of the monitoring wells was based on targeted/judgemental approach to characterise site boundary conditions.

The monitoring wells were initially planned to be installed to a maximum depth of 15 m, in accordance with agreement with the Auditor. The final depth for the wells varied due to the ground conditions and actual depth of groundwater. The groundwater monitoring wells were augered until refusal. Where refusal was encountered the method changed to wash boring to continue to the prescribed depth.

Where groundwater was encountered using the augering, the screen casing, sand filter pack and bentonite were installed. Sand was placed around the casing to 1m below ground level as groundwater would move through the sand filter pack. The bentonite was placed from 1m below ground surface to surface level.

The wells were then concreted off at the base and monuments installed. As a result of the variable groundwater depth encountered during the well drilling, the final depth of each well differed from the original scoped depth of 15 m. The location of the monitoring wells was subsequently surveyed by licensed surveyor LANDdata Surveys on 14 October 2016. The information and location of each well wells and the surface water sampling locations is shown in **Figure 1**, **Appendix A**.

3.2 Monitoring Well Construction

Eight groundwater monitoring wells were installed across the site by GE Drilling, the locations of which are shown in Figure 1.

- Monitoring wells were installed to depths between 5.5-15 m bgl
- Wells were constructed when using augering following encountering groundwater
- Screening of wells was conducted through the installation of 0.4 mm slotted μPVC tubing across a 3 m length
- Following initial installation, monitoring wells were left for a period of one to three days before development
- Following development, wells were left for a period of seven days before purging and sampling
- Following completion, the location of each monitoring well was recorded by GPS and a monument was installed on each well.

The thickness of the sand pack in each well was determined by the measured depth to groundwater (where applicable). In the wells where wash-boring was used, the thickness of the sand pack was increased due to the inability to accurately determine the depth to groundwater. This was a conservative approach which resulted in the sand pack being up to 14 m thick for M-2, M-6, M-7 and M-8 which included the portion around the well screen. The use of a larger sand pack in the wells also provided a level of hydraulic connectivity with the groundwater which served to compensate for the possible screening across the incorrect interval in wells where wash-boring was used. There were no water bearing zones encountered while drilling through fill material, weathered rock and rock. Wash boring commenced on refusal of conventional drilling mechanisms. Striking of groundwater through wash boring could not be determined hence the 3m screen was used at the bottom of each well with the sand filter pack being up to 14m to allow for groundwater infiltration. The standing water level was only determined during well development and sampling.

3.3 Groundwater Well Development

Following construction, the monitoring wells were developed and volumes calculated using the equation below for each of the monitoring wells:

Bore volume =
$$\pi r^2 h (m^3)$$

Where;

r = well radius (half diameter) in metres

h = height of water column = TD - SWL

The volume of water removed from each well for development ranged between 3.9 L (M-3) to 25 L (M-2). Water quality parameters were not measured during the development stage.

The well development sheet, including volumes removed, is provided in Appendix F.

3.1.1 Standing Water Levels

Groundwater depths following development ranged between 1.198-10.547 m bTOC with the exception of wells M-1 and M-8 which were dry. The standing water levels in the deeper monitoring wells M-2 (573.31 m AHD), M6 (571.70 m AHD) and M-7 (573.88 m AHD) appear to have similar elevations, suggesting there may be a degree of connectivity between these points. The difference in SWL in the shallow wells M-3 (574.67 m AHD), M4 (576.75 m AHD) and M-5 (582.86 m AHD) is greater than observed in the deeper wells. Water levels in shallow groundwater systems tend to mimic topography which can be seen in this instance. Bedrock outcrops in the vicinity of M-5, exhibiting strong folding and bedding planes, with commensurate fracturing, providing preferential pathways for penetration of water from the surface.

The depth of the monitoring wells and screening range is provided in Table 3.1. Well construction logs are provided in **Appendix B**.

Monitoring Well	Date Installed	Depth of well (m)	Screen Depth (m)	Well Elevation (ToC m AHD)	Standing Water Level (m AHD)	Depth to Groundwater (m TOC)
M1	15-22/09/2016	8.5	5.5-8.5	582.78	N.A.	N.D. (dry)
M2	13-14/09/2016	15	12-15	577.40	573.31	4.091
M3	13/09/2016	5.5	1.0-4.0	577.61	574.67	2.741
M4	22/09/2016	4.0	1.0-4.0	577.95	576.75	1.198
M5	15/09/2016	5.5	2.5-5.5	584.82	582.86	1.965
M6	14/09/2016	15	12-15	585.25	571.70	10.547
M7	21-22/09/2016	14.7	11.7-14.7	582.44	573.88	8.565
M8	21/09/2016	15	12-15	587.43	N.A.	N.D. (dry)

Table 3.1 Groundwater Monitoring Well Data

3.4 Groundwater Sampling

Groundwater sampling was conducted over the period 28 September to 17 October 2016. The delays in completing the sampling within the initial proposed sampling timeframe was due to breakdown of the drilling equipment. This resulted in the monitoring wells be installed over a longer period of time than originally anticipated.

The depth to groundwater (standing water level to top of the casing) was measured using an interface probe. The total depth of the well was measured at the same time.

Purging of all the wells was undertaken using new bailers at each location.

A bladder pump was used for the collection of the groundwater samples in all the wells due to the depth (up to 15 metres) of some of the wells. Samples were collected directly into laboratory prepared plastic and glass bottle containers. Filtering of the groundwater samples for metals was undertaken by the laboratory.

Preservatives were in sample bottles used for total Phenols (H_2SO_4) and the 2 x 40 ml vials for BTEXN (sodium thiosulfate, NaSO₃). No preservatives were used in sample bottles used for the collection of water samples requiring laboratory filtering and subsequent analysis for heavy metals. These samples were collected in acid washed bottles.

Water quality parameters (pH, Redox, dissolved oxygen, conductivity, temperature) were measured in the field using a multi-probe water quality meter. The following criteria were used to determine when the water quality parameters had stabilised and ready for sample collection:

	рН	EC (μS/cm)	Redox (mV)	DO (ppm)	Temperature (°C)
Acceptable Variation	+/- 0.1	+/-10%	+/-10%	+/-10%	+/- 0.5

None of the wells that could be sampled (i.e. with the exception of M-1 and M-8), purged dry prior to groundwater sampling. The groundwater sampling sheets are attached in **Appendix F**.

3.5 Surface Water

Three surface water samples were collected on 22 September 2016 from the ephemeral water body in the Pit area. The water body is present within an excavation within the bedrock which was dug to accommodate a model railway line and associated 'lake'. Water quality parameters mere measured in the field at the time of collection using a multi probe water quality meter. There was free standing water in this body at the time of sampling, which was up to approximately 1 m deep. There was also abundant vegetation and wildlife in the water body, including frogs and birds.

The edges of the water body contained abundant vegetation and minor algae whilst the main part of the water body appeared relatively clean. The hydraulic connectivity between the water body and the surrounding ground, including fill material was not readily identifiable due to the folded and fractured nature of the bedrock and variable thickness of fill material. The location of the surface water samples is shown in **Figure 1, Appendix A**.

3.6 Implications and Limitations

The use of wash boring as the method for drilling the deeper monitoring wells introduces a number implications for the sampling and analysis of the groundwater. Firstly, there is a potential for water introduced into the system during the initial installation of the wells to influence the physico-chemical parameters of the groundwater, such as conductivity and also introduce contaminants.

The use of extended sand packs in the wells due to t eh inability to identify the groundwater levels during construction and installation may also affect the initial measurements of groundwater depth as the wells may not have attained equilibrium between development and sampling. As such, data from further sampling may resolve this issue. Further sampling may also resolve the potential impacts resulting from wash-boring, as any residual water may be flushed out of the system over a period of time.

4. QUALITY ASSURANCE AND QUALITY CONTROL

Quality assurance (QA) is defined as the planning process and systematic actions undertaken to ensure the representativeness of a field sampling event. These processes are assessed against the Quality Controls (QC) which measures the success of the QA procedures against the data quality indicators (DQI).

The field and laboratory QA/QC, DQIs and data acceptability have been adopted from the ASC NEPM 2013. A review of the field and laboratory QA/QC performance is provided below.

Field DQI	Comment
Use of a suitably qualified and experienced samplers	The inspection and sampling activities were undertaken by SMEC Environmental Scientists Ryan O'Leary between 28 September and 17 October 2016
Appropriate decontamination of reusable equipment and use of blank (field and rinsate) samples	The groundwater monitoring equipment which was placed down the monitoring well (dip-meter/interface probe and all other equipment) was decontaminated before use at each location using Decon 90. No rinsate samples were collected. Given that the equipment was decontaminated appropriately this is deemed sufficient.
Fresh nitrile glove use between each sample	Soil samples were collected using a new disposable nitrile glove for each sample, to avoid risks from cross-contamination
Standard operating procedures and field documentation used	All field activities were undertaken in accordance with SMEC practices and ACT EPA approved guidelines
Samples kept under completed Chain of Custody (CoC) documentation	Samples were recorded and kept under a signed COC until receipt by the laboratory. A copy of the signed CoC is attached in Appendix D .
Collection of field split samples at the appropriate rate for duplicate 1:20 and triplicate 1:20	One intra-laboratory replicate samples and one inter-laboratory samples were analysed during the works. This constitutes a duplicate sample ratio of 1:9 and a triplicate sample ratio of 1:9.
Calibration of field equipment	Calibration certificates for the dip-meter/interface probe and water quality meter are provided in Appendix E . Calibration of the water quality meter probe was undertaken using the pH 4.0 calibration solution provided by ThermoFisher Scientific.
Use of laboratory prepared trip spike for volatile analysis	No trip spike samples were used during this investigation.
Use of laboratory prepared trip blank for volatile analysis	No trip blank samples were used during this investigation.
Laboratory DQI	Comment
Appropriate laboratory supplied containers and preservatives used Samples received in a good condition	All samples were received in appropriately pre-treated and preserved containers.
Samples extracted within holding time	All samples were extracted within the relevant holding time for the CoPC

Table 4.1 QA/QC Protocols and Specifications

Field DQI	Comment
Laboratory accreditation and analytical methods used	SGS (primary) and ALAS (secondary) are NATA accredited laboratories for the analysis of the required CoPC. The analytical methods used are described in the attached laboratory certificate in Appendix D .
Laboratory Limit of Reporting (LOR) to be less than the assessment criteria	The LOR is less than the adopted assessment criteria.
Relative percent differences (RPDs) within the acceptable ranges. Acceptable RPDs: 80% (1-10 x LOR), 50% (10-30 x LOR) and 30% (>30 x LOR)	
Laboratory Control Spike (LCS) analysis at a rate of 1:20, recoveries to be within 70-130%	
Matrix Spike Recoveries (MSR) analysis at a rate of 1:20, recoveries to be within 70-130%	A review of the laboratory quality control report indicated that the rates and recoveries of the laboratory QC samples met the DQIs. A copy of the Laboratory Quality Control Report and
Method Blank (MB) samples to less than the laboratory detection limit	Interpretive Quality Control Report is attached in Appendix D .
Surrogate Recoveries (SR) to be within 70-130%	
Laboratory duplicate samples analysis at one per process batch, or two if the process batch exceeds 10 samples	

4.1 QA/QC Summary

A review of the QA data from the laboratory indicated that the requirements detailed in AS4482.1 (2005) and NEPM (2013) Schedule B (2) were generally met. A summary of the main points from the QA/QC procedure is detailed below.

- Samples were received within appropriate holding times
- Samples were received in appropriate containers and chilled
- The number of duplicate samples (1) met the sampling requirement of 1:20
- The number of inter-laboratory triplicate samples (1) met the requirement of 1:20
- No trip spike samples were analysed for the investigation. This **did not** meet the requirement of one per day
- No trip blank samples were analysed for the investigation. This **did not** meet the requirement of one per day
- RPD between primary and duplicate samples and primary and triplicate was between 4-11%
- Laboratory surrogate samples were within the required range of 70-130%
- Laboratory internal duplicate samples were acceptable
- Laboratory matrix spikes generally met the recovery value of 70-130%
- Laboratory LOR was less than the assessment criteria for all CoPC

• The groundwater monitoring equipment which was placed down the monitoring well (dipmeter/interface probe and all other equipment) was decontaminated before use at each location using Decon 90.

The lack of trip blank and trip spike samples may have resulted in under-stating the concentration of benzene in the groundwater as the detected levels were marginally above the analytical detection limit of 0.5μ g/L. The overall impact is considered to be low as the reported concentration was well below the relevant ecological/environmental screening levels and the potential for extraction of groundwater for potable use is minimal due to mains water being supplied to residential settings.

In summary, the data from the analysis of water samples is considered suitable for use.

5. RESULTS

The results from the field measurement of physico-chemical water quality parameters for surface water and groundwater and the analytical results from both are detailed below. Two wells were found to be dry (M-1 and M-8) at the time of sampling.

5.1 Field Parameters

5.1.1 Surface Water

Three surface water samples were collected on 22 September 2016, from the quarry portion of the Site. The physical conditions of the water at sampling was generally quite clear, with small amount of sediment/turbidity. The condition of the water body in the vicinity of the sampling locations was observed to contain a range of water plants with minor algae and fauna also present. The water quality parameters measured upon collection are shown in Table 5.1.

Surface Water	Date	рН	Conductivity (µS/cm)	DO (ppm)	Redox (mV)
W-1	22/09/2016	3.99	166	7.9	344
W-2	22/09/2016	3.97	93.3	7.97	320
W-3	22/09/2016	3.96	115	8.19	296

 Table 5.1
 Surface Water Quality Parameters

The results from the field measurements indicated that the surface water was relatively acidic, with pH being relatively constant, ranging between 3.96-3.99. The water was well oxygenated (DO 7.9-8.19 ppm) and quite fresh, with conductivity between 93.3-166 μ S/cm.

5.1.2 Groundwater

Groundwater wells were installed between 13 and 22 September 2016. The wells were surveyed and the measurement between the survey height and the top of casing was subsequently conducted resulting in an accurate determination of the total height to top of casing. The data showing well installation date, elevation of the top of casing, well depths and standing water levels are presented in Table 5.2.

Table 5.2	Groundwater Wells: Installation and Development
-----------	---

Well	Date Installed	Elevation (m AHD) ¹	Standing Water Level (m AHD)	SWL (m bTOC)	Water Volume Removed During Development (L)	Comments
M-1	15-22/09/2016	582.78	N.A.	0	-	Dry
M-2	13-14/09/2016	577.40	573.31	4.091	25	-
M-3	13/09/2016	577.61	574.67	2.741	3.9	-
M-4	22/09/2016	577.95	576.75	1.198	7.1	-
M-5	15/09/2016	584.82	582.86	1.965	5.7	-
M-6	14/09/2016	585.25	571.70	10.547	10.1	-
M-7	21-22/09/2016	582.44	573.88	8.565	12.8	-
M-8	21/09/2016	587.43	572.33	15.096	-	Dry
1.	ToC elevation deter	mined after meas	surement of casing ab	ove ground and sur	veying of well	

The groundwater elevation was found to vary quite markedly across the site, from 571.70 m AHD (M-6) to 582.86 m AHD (M-5).

Following completion, the wells were sampled between 28 September and 17 October 2016. Two wells were found to be dry following development. No groundwater was encountered in these wells predevelopment. The driller thought he had encountered groundwater at M1 and wash boring occurred at M8. This was despite there being prolonged periods of rainfall between 22-29 September when 66.2 mm of rainfall was recorded. The absence of water in M-1 may be due to the nature of the sub-surface conditions, including the degree of fracturing and/or folding which may influence the permeability of the bedrock and hence transmissivity of groundwater.

The variability in depth to groundwater and the underlying geology may also exert an influence on the groundwater flow direction. An initial assessment of flow direction indicated that groundwater may flow to the south-east, based on the measured groundwater elevation. The variability in ground conditions and measured depth to groundwater across the site suggests that the connectivity between wells may be restricted or not be present and that depth to groundwater is reflective of ground conditions in the immediate vicinity of the monitoring wells.

The results showed that there was an appreciable difference in pH between the surface water samples and those from the groundwater which all ranged between 6.50 and 6.99, except for one being M-3 which had a pH of 5.95. The temperature of the groundwater also exhibited a range of almost 6°C, with measured temperatures ranging from 14.4°C (M-5) to 20°C (M-7). The water was purged into a plastic measuring cup and the temperature taken using probes. The temperature variation may reflect the ambient air temperature during purging (hotter during midday and cooler in morning and late afternoon). The physico-chemical parameters are presented in Table 5.3.

Well	Date Sampled	рН	Conductivity (µS/cm)	DO (ppm)	Redox (mV)	T (°C)	Comment
M-1	17/10/2016	n.d.	n.d.	n.d.	n.d.	n.d.	Dry
M-2	28/09/2016	6.89	1923	2.25	94	18.9	-
M-3	28/09/2016	5.94	887	9.17	142	16.6	-
M-4	17/10/2016	6.60	633	2.94	115	15.5	-
M-5	17/10/2016	6.99	440	2.89	96	14.4	-
M-6	17/10/2016	6.91	2250	5.30	129	15.2	-
M-7	17/10/2016	6.50	455	7.83	136	20	-
M-8	17/10/2016	n.d.	n.d.	n.d.	n.d.	n.d.	Dry

Table 5.3Groundwater Quality Parameters

The oxygenation of the groundwater varied, with dissolved oxygen concentrations between 2.25 ppm (M-2) to 9.17 ppm (M-3). The redox potential was relatively stable between wells, ranging between 94 mV (M-2) to 142 mV (M-3). The conductivity exhibited a larger range, with results between 440 μ S/cm (M-5) to 2, 250 μ S/cm (M-6).

The variability in conductivity recorded in the monitoring wells may be due to the presence of dissolved material in the vicinity of individual wells. The lowest conductivities were measured in M-5 (440 mV) and M-7 (455 mV), located in the northern corner and southern portion of the site, respectively. There does not appear to be an observable correlation between any of the measured parameters or with depth to groundwater. The slightly lower conductivity data from the shallower monitoring wells M-3, M-4 and M-5 may be due to infiltration of surface water, which would serve to dilute any water which may have higher conductivity.

The EC for M-7 is considerably lower than the comparative deeper wells (M-2 and M-6). This may be due to the fact that M-7 was installed in clean soil with no fill whereas M-2 and M-6 contained fill material to 3m and 1.5m, respectively. This may have influenced the resultant conductivity measurement. The variability in the measured conductivity between the deeper wells may also be a reflection of the initial drilling and installation and it is recommended that the conductivity be measured during future sampling

events to determine whether the method of installation (wash boring) had an influence on the measured conductivity.

The presence of trace amounts of metals is not considered to influence the measured conductivity. The observed conductivity may also be due to the presence of other substance(s) within the water column that were not included in the CoPC. Should a similar range be measured in a future sampling event, it is suggested that total dissolved solids (TDS) be included in the analytical suite to provide information on the potential reasons for the variability in conductivity.

In future if conductivity results are similar to those measured in the initial sampling round, analysis of major ions should be considered to provide more information on the water chemistry. This information could be plotted on a Piper or Durov diagram to identify any possible differences or similarities.

5.2 Analytical Results

5.2.1 Surface Water

The results from the surface water samples indicated that BTEXN, TRH, PAH, OPP, OCP and PCB were **below** analytical detection limits. Of the metals, only zinc in W-2 ($25 \mu g/L$) and W-3 ($22 \mu g/L$) was found to exceed the NEPM (2013) screening criteria for fresh water. All other metals were either **below** detection limits or **below** assessment criteria.

5.2.2 Groundwater

The analytical results for the groundwater indicated that several of the COPC, namely TRH, PAH, OCP, OPP and PCB were all **below** the analytical limit of detection. The analysis revealed the presence of benzene above analytical detection limits in two samples, M-2 (1.0 μ g/L) and M-7 (1.1 μ g/L). These detections were below the NEPM EIL (2013) and ANZECC (2000) criteria values of 950 μ g/L. The benzene concentration in M-2 was above the drinking water guideline value of 1.0 μ g/L. The Australian Drinking Water Guidelines were not applicable as the groundwater is not extracted for consumption as potable water is supplied by mains.

The identification of metals in the groundwater samples may be a reflection of the variability in the type and thickness of fill material in the vicinity of each well. The reported presence of elevated levels of cadmium, zinc and chromium in surface samples may be responsible for the observed presence in the groundwater if similar impacted material was buried in the areas in the vicinity of the monitoring wells. These elements exhibit higher solubility than lead compounds which may also explain why lead was not reported in the groundwater samples. Heavy metals exceedances are summarised in Table 5.4.

Monitoring Well	Cd	Cu	Ni	Zn					
NEPM (2013) criteria ¹	0.2	1.4	11	8					
M-2	1.3	4	20	67					
M-3	-	-	-	21					
M-5	-	2	-	18					
M-6	-	-	13	-					
M-7	-	-	12	-					
All units in µg/L	All units in μg/L								
1. Criteria for fresh w	ater								

Table 5.4 Heavy Metal Exceedances in Groundwater

Other possible reasons for the presence of heavy metals in the groundwater may be evidence of leachate from the adjacent asbestos dump or a reflection of the local geology. There is potential for

metals to be associated with the asbestos dump, however this cannot be confirmed as the current investigation did not include the dump area.

The presence of benzene in M-2 (1.0 μ g/L) and M-7 (1.1 μ g/L) is somewhat unusual as there was no benzene detected in any surface soil sample or any other monitoring well, however it is noted that both these locations are down gradient of the identified UST further north. There are no other obvious sources of benzene. Alternatively, the presence of benzene at concentrations marginally above the analytical detection limit may be a result of contamination within the analysing laboratory. The presence of benzene is an issue that will require further groundwater sampling to develop a better understanding of the potential source(s) of this CoPC.

6. DISCUSSION AND CONCLUSIONS

The investigation of groundwater quality at the Site indicated that the presence of COPC was limited to benzene and metals. Metals are naturally occurring substances and their presence in groundwater (and soil) is ubiquitous. The presence of metals cadmium, copper, nickel and zinc may be a reflection of the underlying geology or may also include an anthropogenic component. At this point, it is not possible to identify a particular source for the identified metals.

6.1 Rainfall

Three periods of high rainfall occurred during the well installation which may have influenced the observed results. Rainfall data from Bureau of Meteorology for Parliament House, the nearest meteorological station, revealed that 66.2 mm rainfall occurred:

- 22 September: 22.2 mm
- 29 September: 19.8 mm
- 30 September: 24.2 mm

Given that the observed ground conditions were quite porous due to the underlying fill material and the relatively fractured bedrock, the elevated rainfall may have leached some metals from the material, or transported from further afield, resulting in the observed concentrations in the groundwater.

The results for surface water, particularly the physico-chemical parameter pH, exhibited appreciable difference with the groundwater results. This may be due to the presence of organic acids derived from decayed vegetation contributing to the observed pH in the surface water. The surface waters samples were collected from the edges of the water body, where the potential for organic matter to influence the measured pH may be greater than in deeper parts of the water body.

The absence of water in groundwater well M-1 was unusual, given that elevation of this well (582.6 m) is lower than other wells in which groundwater was present, such as M-5 and M-6 (elevation 584 m). The absence of water in this well may be due to the underlying geology, which exhibits folding and fracturing in outcrop.

The connectivity of groundwater between the monitoring wells has not been confirmed. The variability in the thickness of fill material across the site coupled with the folded and fractured nature of the underlying bedrock may exert an influence on the presence/absence of groundwater in each well. A similar explanation may account for the absence of groundwater in monitoring wells particularly M-1 which is located in the Pit area. The absence of groundwater in monitoring well M-8 may be due to the location at the highest elevation of any of the wells (586.70 m AHD) and in ground with no identified fill material.

The identification of benzene in M-2 and M-7 was not considered to have appreciable implications for the nearest registered groundwater bores. A potential source for the benzene may be the former UST uncovered during the site investigation. No information was available to determine the substance stored within the UST. Therefore it is suggested that further sampling and investigation be conducted to allow assessment of the potential sources and implications arising from the identification of this CoPC. It is also recommended that total dissolved solids (TDS) be included in the analytical suite to provide information on the potential reasons for the variability in conductivity identified between wells.

6.2 Conclusions

Land Development Agency (LDA) commissioned Snowy Mountains Engineering Corporation (SMEC) to conduct an environmental site investigation of the Canberra Brickworks to determine the extent and quantity of contamination present at the site. The works involved examination of soil, surface and groundwater.

The examination of groundwater involved installation of eight groundwater monitoring wells across the site, which were installed between 13 and 22 September 2016. Wells were installed to depths between 4.575 m bgl and 15.670 m bgl. Surface water samples were collected on 22 September and groundwater samples collected between 28 September and 17 October 2016.

Surface water was present as an ephemeral water body in the Pit area at the time of sampling. Depth to groundwater ranged between 1.198 m bTOC (M-4) to 10.547 m bTOC (M-6). Groundwater was not recorded in two wells (M-1 and M-8).

The results of the physico-chemical parameters showed that there was an appreciable difference in pH between the surface water samples (3.96-3.99) and those from the groundwater (5.94 and 6.99). The difference in measured pH between the surface water and groundwater samples may be the result of the influence of organic acids derived from the breakdown of organic matter in the surface water body. Other possible factors which may account for the observed difference may include the potential for buffering and control of groundwater pH from the fill material and bedrock.

Other parameters, such as dissolved oxygen and redox potential indicated that both surface water and groundwater were relatively well oxygenated. The temperature of the groundwater exhibited a range of almost 6° C, from 14.4°C (M-5) to 20°C (M-7).

The analytical results for surface water samples indicated that BTEXN, TRH, PAH, OPP, OCP and PCB were below analytical detection limits. Of the metals, only zinc in W-2 ($25 \mu g/L$) and W-3 ($22 \mu g/L$) was found to exceed the NEPM EIL (amended 2013) screening criteria for fresh water. All other metals were either **below** detection limits or **below** the relevant assessment criteria.

The analytical results for the groundwater indicated that several of the COPC, namely TRH, PAH, OCP, OPP and PCB were all **below** the analytical limit of detection. The analysis revealed the presence of benzene above analytical detection limits in two samples, M-2 (1.0 μ g/L) and M-7 (1.1 μ g/L). These detections were below the NEPM EIL (2013) and ANZECC (2000) criteria values of 950 μ g/L.

A number of exceedances for metals were recorded in the groundwater samples. The concentrations of Cd (1.3 μ g/L), Cu (4 μ g/L), Ni (20 μ g/L) and Zn (67 μ g/L) in monitoring well M-2 were found to exceed the respective NEPM (2013) EIL assessment criteria values of 0.2 μ g/L, 1.4 μ g/L, 11 μ g/L and 8 μ g/L, respectively. Zinc was also found to exceed the EIL criteria in M-3 (21 μ g/L) and M-5 (18 μ g/L), whilst copper in M-3 (2 μ g/L) and nickel in M-6 (13 μ g/L) and M-7 (12 μ g/L) also exceeded the criteria. These results are not considered to represent a significant environmental risk.

The detection of metal levels above the NEPM EIL freshwater assessment criteria may be a reflection of natural conditions or may reflect the presence of contaminated material similar to that identified in the surface material from within the kilns, which contained higher concentrations of cadmium and zinc. However, it is recommended that further monitoring should be conducted to determine the long-term trend for these metals.

Furthermore, it is recommended that additional sampling and analysis of the surface and groundwater be conducted, particularly to confirm the presence of benzene in monitoring wells M-2 and M-7. This is considered important, as benzene was not reported in any soil samples and its presence in the groundwater will require further investigation to enable a better understanding of the possible source(s). It is also recommended that another two wells are constructed down gradient of the identified UST (AEC-7 in the Soil Assessment Report) during the investigation, decommission and removal works.

7. REFERENCES

ASRIS (2011) Australian Soil Resource Information System (<u>http://www.asris.csiro.au/</u>). Accessed 15 September 2016

ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality

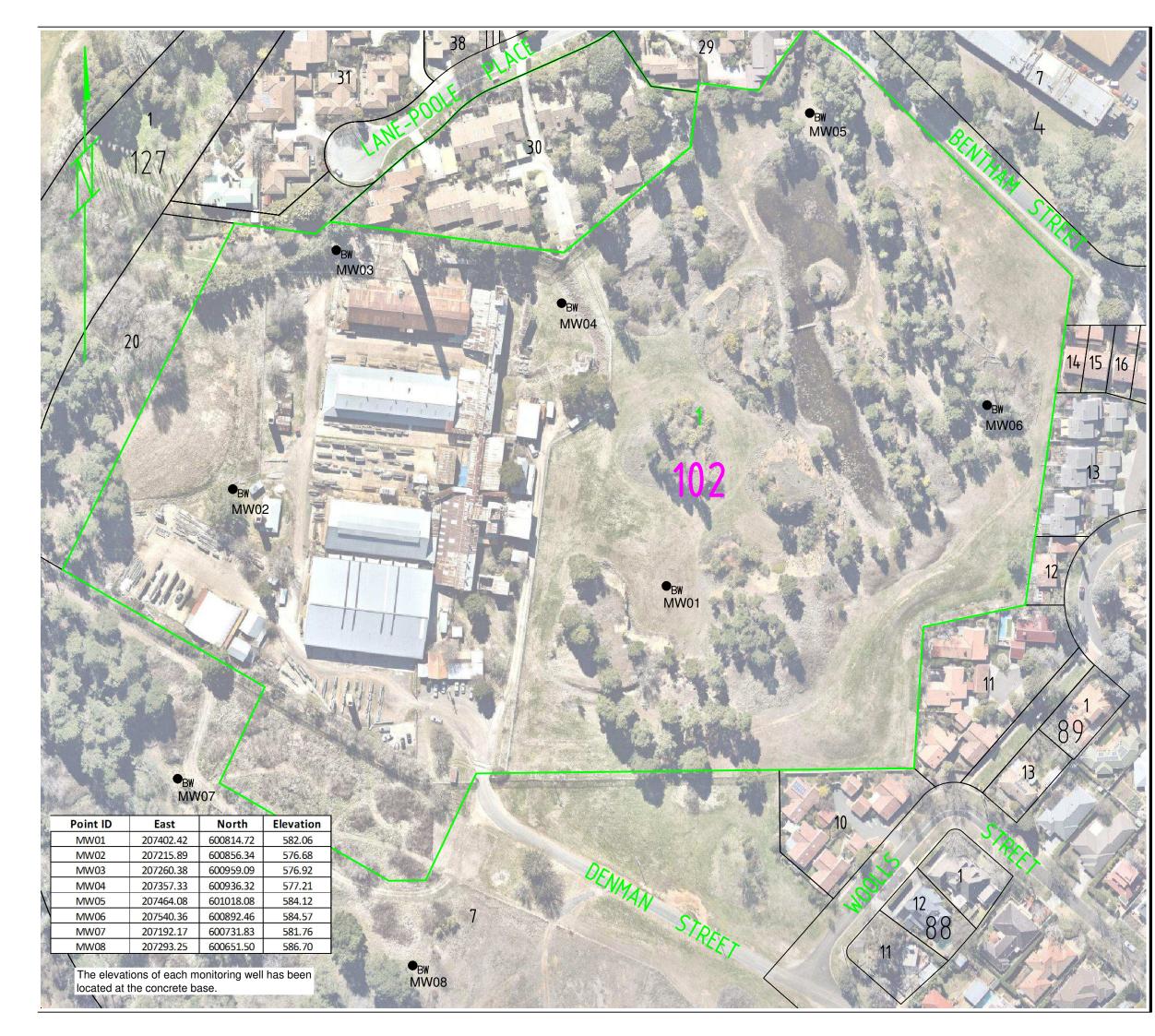
Australian Standard AS4482.1 (2005) *Guide to the investigation and sampling of potentially contaminated soils: Part 1 – Non-volatile and semi volatile compounds*

Bureau of Mineral Resources (1992) Geology of Canberra 1:100 000 Sheet 8287

Evans WR (1984) *Hydrogeology of the Australian Capital Territory and Environs.* Bureau of Mineral Resources, Geology and Geophysics, Canberra


National Environment Protection Council (1999, amended 2013) National Environmental Protection Measures (NEMP) *Schedule B (1) Guideline Levels for Soil and Groundwater*

National Environment Protection Council (1999, amended 2013) National Environmental Protection Measures (NEMP) *Schedule B (5) Ecological Risk Assessment*

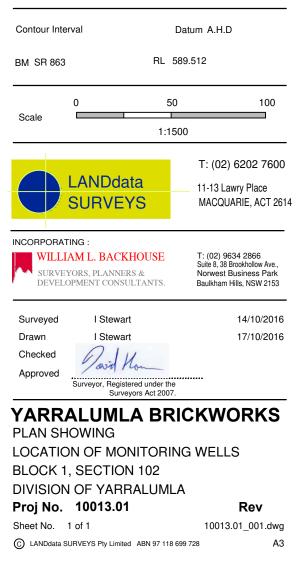

National Uniform Licensing Committee (2012) *Minimum Construction Requirements for Water Bores in Australia.* National Water Commission, Canberra

Western Australian Department Health (2009) Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia

APPENDIX A – FIGURES

Location: X/PROJECTi3002523 Canberra Brickworks Phase 2 Contamination and Geotech/6 Delivery/6.2 Figures and Result Tables/6.2.1 GIS/Figure 2_Contam_Overal_010116 - New.mxd

CLIENT SMEC AUSTRALIA PTY LTD


DISCLAIMER:

This plan of survey and its associated digital data was prepared under instruction to meet specification as agreed. This information should not be used or relied upon by any other party.

RE	VISION	DATE

For the purpose of this plan, the boundary information shown is from Actmap digital data base only. Boundaries have not been surveyed therefore further survey and marking of boundaries may be required.

The reduced levels in this survey are based on local datum derived through GPS connection to published survey control marks with Australian Height Datum values.

APPENDIX B – WELL CONSTRUCTION LOGS

	: 3002523 : Environmental : Depth		GEOLOGICAL LOG OF G CLIENT : Land Dev POSITION : FINAL DEPTH: 8.5m SUBSTANC	SHEET PROJE SURF/ TOP C	SHEET No: 1 of 1 PROJECT No:		
Method Support	Depth (m)	Graphic Log	Description NAME: grain size / plasticity, color, structure, minor components	Well Construction Details	Construction notes	s Notes (Structure, origin, etc)	
			FILL GRAVELLY CLAYEY SAND WITH SOME GRAVELS BROWN TO YELLOW GRAVELLY CLAYEY SAND LIGHT BROWN COARSE GRAVEL BEDROCK (40%) 1- 10MM SANDY GRAVELS , LIGHT BROWN COARSE GRAVEL BEDROCK (40%) 1- 10MM SANDY GRAVELS , LIGHT BROWN FINE GRAVEL BEDROCK (15%) 1- 5MM SANDY GRAVELS BEDROCK GRAVELLY SAND (10%) COARSE 1-3MM IN DIAMETER, LIGHT BROWN FINE GRAVEL		Eentonite		
Notes:	InflowStan	ding Water Level				·	
CONTRACT			COMMEN			LOGGED BY: RO CHECKED BY: GO	

	SMEC		GEOLOGICAL LOG OF G	ROUNDWATER BORE	:	HOLE NO SHEET NO PROJECT	: 1 of 1
ROJECT PURPOSE OCATION	: 3002523 : Environmental :		CLIENT : Land Dev POSITION : FINAL DEPTH: 15m	elopment Agency		TOP OF C	ELEVATION: ASING: OM HORIZONTAL: 90°
Drilling	Depth		SUBSTAN	CE	Well Construct	ion	OTHER OBSERVATIONS
Method Support	Depth (m)	Graphic Log	Description NAME: grain size / plasticity, color, structure, minor components	Well Construction Details	Construction	n notes	Notes (Structure, origin, etc)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CONCRETE GRAVELLY SANDY CLAY, SLIGHTLY MOIST PLASTICITY PID 0.0 ppm DARK BROWN WET SILTY CLAY BROWN ORANGE SILTY CLAY IDUP PLASTICITY SILTY CLAY LOW PLASTICITY SILTY CLAY CLAY SANDY GRAVELLY CLAY GRAVELS UP TO 5MM IN DIAMETER - YELLOW MUTTING LOW PLASTICITY CLAYEY SAND WEATHERED ROCK - QUARTZ - FINE GRAVEL PID 0.0 ppm		Filter Pack		
		1					
otes:	► Inflow Stan	ding Water Level					
ontract Quipmen			COMMEN				LOGGED BY: RO CHECKED BY: GO

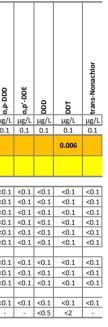
ROJECT PURPOSE OCATION	:		POSITION : FINAL DEPTH: 5.5m	velopment Agency	SHEET N PROJEC SURFAC TOP OF (ANGLE F	o: 1 of 1 T No: E ELEVATION : CASING: ROM HORIZONTAL : 90°
Drilling	Depth		SUBSTAN		Well Construction	OTHER OBSERVATIONS
Method Support	Depth (m)	Graphic Log	Description NAME: grain size / plasticity, color, structure, minor components	Well Construction Details	Construction notes	Notes (Structure, origin, etc)
			FILL TOPSOIL GRAVELLY SANDY CLAY BRICKS CONCRETE PID 0.1 ppm		Bentonite	
	- 1 -		POORLY GRADED SANDY GRAVEL			
	- 2 -		WET CLAYEY SANDY GRAVEL		Screen	
	- 3 -		SANDY CLAY		ing Water Level	
	- 4 -					
	- 5 -		CLAYEY SAND YELLOW TO BROWN SOME ROCK FRAGMENTS		Filter Pack	
lotes:	F 6 - Stan	ding Water Level				
ONTRAC	TOR:		COMMEI			LOGGED BY: RO CHECKED BY: GO

PROJECT PURPOSE OCATION Drilling	: 3002	MEC 523 onmental		CLIENT : Land De POSITION : FINAL DEPTH: 4m SUBSTAT	evelopmen	it Agency	HOLE Well Construct	TOP OF C ANGLE FF	D: 1 of 1 No: ELEVATION :
Method Support	Depth (m)		Graphic Log	Description NAME: grain size / plasticity, color, structure, minor components		Construction Details	Constructio		Notes (Structure, origin, etc)
	1 1 2 2 2 3 3			Fill Grass cover , sandy clay wih gravels medium plasticity PID 0.0 ppm Fill sandy clay with gravels 5-12mm , pieces of bolt in fill PID 0.0 ppm Wet light brown clay PID 0.0 ppm			g Water Level		
CONTRAC		Stafiù		COMME		22/09/2016			LOGGED BY: RO
		oile Drill Rig		COMPL		22/09/2016			CHECKED BY: GO

EQUIPMENT: Mobile Drill R	ig	COMPLE				CHECKED BY: GO
Notes: Inflow $- \sqrt{2}$ S	Standing Water Level		ICED: 15/00/2016			
	Standing Water Level	Silty clay , brown moist, medium to high plasticity PID 0.0 ppm	CED: 15/09/2016	Screen		LOGGED BY: RO
- 2 -		Siltstone , light brown, highly weathered , dry PID 0.0 ppm	L L L L L L L L L L L L L L L L L L L	Filter Pack	:	
		Fill - sandy gravelly light brown clay , some gravel PID 0.0 ppm Fill - silty sandy clay , light brown medium plasticity PID 0.0 ppm Siltstone rock , very fine medium soft light grey brown		Bentonite		
Method Support Depth (m)	Graphic Log	Description NAME: grain size / plasticity, color, structure, minor components	Well Construction Details	Constructio		Notes (Structure, origin, etc)
PROJECT : 3002523 PURPOSE : Environmental LOCATION : Drilling Depth	:	CLIENT : Land Dev POSITION : FINAL DEPTH: 5.5m	elopment Agency	HOLE Well Construct	TOP OF C ANGLE FF	D: 1 of 1 No: E ELEVATION :

		SMEC		GEOLOGICAL LOG OF G	ROUNDWATER BOR		HOLE No SHEET No: PROJECT N	1 of 1
PROJE PURP(LOCAT	OSE	: 3002523 : Environmental :		POSITION : FINAL DEPTH: 15m	evelopment Agency		TOP OF CA	ELEVATION: \SING: DM HORIZONTAL: 90°
Drillin	ng	Depth		SUBSTAN	ICE	Well Construct	tion	OTHER OBSERVATIONS
Method	Support	Depth (m)	Graphic Log	Description NAME: grain size / plasticity, color, structure, minor components	Well Construction Details	Construction	n notes	Notes (Structure, origin, etc)
-				Fill - gravelly sandy clay , gravels 1-5mm PID 0.8 ppm Brown siltstone	_	Bentonite		
- r		- 1 -						-
-		- 2 -		Extremely weathered shale PID 0.1 ppm				-
-		- 3 -						-
-		- 4 -		Weathered siltstone , light brown PID 0.0 pppm				-
_								-
- 				Layers of limestone , wash box from 5.5m				-
_ 						Filter Pack		
		8 -						
- 		9 -						
- 								
_ 						Inding Water Level		
_		14				Screen		
- 							-	
-								
Notes:	:	► Inflow Stand	ding Water Level					
CONTI EQUIP				COMME				LOGGED BY: RO CHECKED BY: GO

PROJE		SMEC : 3002523			ROUNDWATER BORE	SHE PRC SUF	DLE No: M7 EET No: 1 of 1 DJECT No:
PURPO		: Environmental		POSITION : FINAL DEPTH: 15m			P OF CASING: GLE FROM HORIZONTAL : 90°
Drillir	_	Depth		SUBSTAN	CE	Well Construction	
Method	Support	Depth (m)	Graphic Log	Description NAME: grain size / plasticity, color, structure, minor components	Well Construction Details	Construction no	tes Notes (Structure, origin, etc)
Ň	ŝ	<u> </u>		Orange brown , moist sandy clay medium plasticity PID 0.0 ppm			
		- 1 -		Brown silty sandy clay , moist medium plasticity PID 0.0 ppm		Bentonite	
				Rock			
		- 2 -					
		- 3 -					
		- 4 -					
		- 5 -					
						Filter Pack	
		- 7 -					
		- 8 -					
				Wash boring			
		- 10 -					
		- 11 -					
						ing Water Level	
		- 12 -					
		- 13 -				Screen	
		- 15 -					
		- 16 -					
otes	: 1	▶ InflowStan	ding Water Level				1
ONT QUIF	RACT			COMMEN			LOGGED BY: RO CHECKED BY: GO


PROJECT PURPOSE LOCATION Drilling	: 3002523 : Environmental : Depth		GEOLOGICAL LOG OF GROUNDWATER BORE HOLE HOLE No: M8 BALET No: 1 of 1 PROJECT No: CLIENT : Land Development Agency SURFACE ELEVATION : TOP OF CASING: POSITION :: FINAL DEPTH: 15m OPESCRIPTION Well Construction Details Well Construction Details							
Method Support	Depth (m)	Graphic Log	Description NAME: grain size / plasticity, color, structure, minor components		Construction					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Dark brown sandy clay PID 0.0 ppm Dark brown sandy clay, some gravels 2.5mm diameter Filthy sandy clay PID 0.0ppm Sandy clay some rock Volcanic rock Siltstone, start of wash broing Harder rock		Filter Pack					
Notes:	▶ Inflow - — Stan	ding Water Level				'				
CONTRACT			COMME			LOGGED BY: RO CHECKED BY: GO				

APPENDIX C – RESULTS TABLES

					VO	۲'۰							Mo	tals														Organo	chlorin	o Posti	rides						
Local Re	SMEC ople. Glabal Experience.	Benzene Hg/L	Toluene	人型 上 大 上 大 山 、 に 中 、 し 、 、 、 、 、 、 、 、 、 、 、 、 、	xylene (m & p) ۲/۵۳	Xylene (o)	Xylene Total الم	Total BTEXN	Naphthalene	Arsenic (Filtered)	전 고 Cadmium (Filtered)	여. (Filtered)	Copper (Filtered)	成 口 口 日 日 日 日 日	简 Mercury (Filtered)	by Nickel (Filtered)	为 了 Zinc (Filtered)	Alpha BHC	Aldrin 7/8H	Chlordane 7/ ^{8/1}	gamma-Chlordane	P-BHC	д-внс	Dieldrin	Endosulfan I H®/L	Endosulfan II Hg/L	[편] Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Lindane الم	Methoxychlor	Mirex	ор-000 1 ма/г
LOR			0.5		μ <u>g</u> /L 1	0.5	1.5		0.5		0.1	<u>με/ι</u> 1	<u>μg/ι</u> 1	μ <u>g</u> /L 1	0.1	<u>με/ι</u> 1	<u>μ<u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		0.1	0.1		0.1			0.1	0.1	0.1		0.1		0.1		0.1		0.1		
Groundwate CRC CARE 20	Schedule B1, Table 1C r Investigation Levels 11 Table 1A(4) GW HSLs for Ision (HSL-A 4-8m, Clay)	950 800			200	350			16	13	0.2	1	1.4	3.4	0.06	11	8			0.03					0.03	0.03		0.01			0.01			0.2			
Field ID	Sampled Date																																				
M2	28/09/2016	1	<0.5	<0.5	<1	<0.5	<1.5	<3	<0.5	<1	1.3	<1	4	<1	<0.1	20	67	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
M3	28/09/2016	<0.5	<0.5	<0.5	<1	<0.5	<1.5	<3	<0.5	<1	<0.1	<1	1	<1	<0.1	2	21	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
M4	17/10/2016	< 0.5	<0.5	<0.5	<1	<0.5	<1.5	<3	<0.5	<1	<0.1	<1	1	<1	<0.1	2	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1				
M5	17/10/2016			<0.5		< 0.5			<0.5	<1		<1	2	<1			<5		<0.1	<0.1		<0.1		_		<0.1	<0.1	-			<0.1			<0.1			
M6	17/10/2016			<0.5			<1.5					<1		<1		-			< 0.1	< 0.1		<0.1				<0.1	<0.1				<0.1			<0.1			
M7	17/10/2016	1.1	<0.5	<0.5	<1	<0.5	<1.5	<3	<0.5	<1	0.2	<1	1	<1	<0.1	12	8	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
W1	22/09/2016	< 0.5	<0.5	<0.5	<1	<0.5	<1.5	<3	<0.5	1	<0.1	<1	<1	<1	<0.1	1	25	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
W2	22/09/2016	< 0.5	<0.5	<0.5	<1	<0.5	<1.5	<3	<0.5	<1	<0.1	<1	1	<1	<0.1	<1	5	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
W3	22/09/2016	<0.5	<0.5	<0.5	<1	<0.5	<1.5	<3	<0.5	<1	<0.1	<1	1	<1	<0.1	1	22	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
QC22	28/09/2016	0.8	<0.5	<0.5	<1	<0.5	<1.5	<3	<0.5	<1	1.4	<1	4	<1	<0.1	20	64	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
QC23	28/09/2016	<1			<2	<2	<2			<1		<1		<1					<0.5		-			<0.5		<0.5	<0.5	-						<0.5		-	-

Notes: Bold font is where > LOR

Dorange highlight is where value is > NEPM 2013 Schedule B1, Table 1C criteria IS - Insufficient sample for analysis

																						DAI									Pheno												
		⊢	<u> </u>		0	rganop	nospno	orous F	Pesticid	es												PAH								_	Pneno	IS	1	_	_	1		РН					
Local Pe	SMEC ople. Global Experience.	Azinophos methyl	Bromophos-ethyl	Chlorpyrifos	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Isodrin	Malathion	Methidathion	Parathion	1-Methylnaphthalene	2-methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benz (a) an thracene	Benzo(b+j)fluoranthene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Benzo(k) fluoran the ne	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Prene	Total PAHs	Total Phenols	ce - c9	C6-C10	C6-C10 less BTEX (F1)	C10 - C14	C15 - C28	c29-C36	ТКН СЗ7-С40	C10-C16 (F2)	C16-C34 (F3)	C34-C40 (F4)	C10 - C36 (Total)	C10 - C40 (Total)
			μg/L	μg/L		μg/L				μg/L			μg/L															μg/L μ				μg/L	μg/L						μg/L		μg/L	μg/L	µg/L
LOR		0.2	0.2	0.2	0.5	0.5	0.5	0.2	0.2	0.1	0.2	0.5	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1 (0.1 0).1	0.1 0	0.1	0.1 0	.1 0.1	1 1	10	40	50	50	50	200	50	200	60	500	500	450	650
NEPM 2013	Schedule B1, Table 1C			0.01	0.01		0.15		0.2		0.05		0.004																		320												
Groundwate	r Investigation Levels			0.01	0.01		0.20																																				
CRC CARE 20	11 Table 1A(4) GW HSLs for																																										
Vapour Intre	sion (HSL-A 4-8m, Clay)																																										
Field ID	Sampled Date																																										
M2	28/09/2016	<0.2	<0.2	<0.2	<0.5	<0.5	< 0.5	<0.2	<0.2	<0.1	<0.2	<0.5	<0.2	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	:0.1 <	0.1 <	0.1 <	<0.1 <	0.1	<0.1 <	0.1 <0.	1 <1	<10	<40	<50	<50	<50	<200	<200	<200	<60	<500	<500	<450	<650
M3	28/09/2016	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.1	<0.2	<0.5	<0.2	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	:0.1 <	:0.1 <	0.1 <	<0.1 <	:0.1	<0.1	0.1 < 0.	1 <1	<10	<40	<50	<50	<50	<200	<200	<200	<60	<500	<500	<450	<650
M4	17/10/2016	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.1	<0.2	<0.5	<0.2	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	:0.1 <	:0.1 <	0.1 <	<0.1 <	0.1	<0.1	0.1 < 0.	1 <1	<10	<40	<50	<50	<50	<200	<200	<200	<60	<500	<500	<450	<650
M5	17/10/2016	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.1	<0.2	<0.5	<0.2	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	0.1 <	0.1 <	0.1	<0.1 <	:0.1	<0.1).1 < 0.	1 <1	<10	<40	<50	<50	<50	<200	<200	<200	<60	<500	<500	<450	<650
M6	17/10/2016	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.1	<0.2	<0.5	<0.2	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	:0.1 <	:0.1 <	0.1 <	<0.1 <	0.1	<0.1).1 <0.	1 <1	<10	<40	<50	<50	<50	<200	<200	<200	<60	<500	<500	<450	<650
M7	17/10/2016	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.1	<0.2	<0.5	<0.2	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	0.1 <	0.1 <	0.1 <	<0.1 <	0.1	<0.1 <).1 <0.	1 <1	<10	<40	<50	<50	<50	<200	<200	<200	<60	<500	<500	<450	<650
																						T					T																
W1	22/09/2016	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.1	<0.2	<0.5	<0.2	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	:0.1 <	:0.1 <(0.1 <	<0.1 <	0.1	<0.1 <).1 <0.	1 <1	<10	<40	<50	<50	<50	<200	<200	<200	<60	<500	<500	<450	<650
W2	22/09/2016	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.1	<0.2	<0.5	<0.2	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1 <	:0.1 <	:0.1 <	0.1 <	<0.1 <	0.1	<0.1 <).1 <0.	1 <1	<10	<40	<50	<50	<50	<200	<200	<200	<60	<500	<500	<450	<650
W3	22/09/2016	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.1	<0.2	<0.5	<0.2	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1 <	:0.1 <	:0.1 <	0.1 <	<0.1 <	0.1	<0.1 <).1 <0.	1 <1	IS	<40	<50	<50	<50	<200	<200	<200	<60	<500	<500	<450	<650
QC22	28/09/2016	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.2	<0.2	<0.1	<0.2	<0.5	<0.2	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1 <	:0.1 <	0.1 <	0.1 <	<0.1 <	0.1	<0.1 <).1 <0.	1 <1	20	<40	<50	<50	<50	<200	<200	<200	< 0.06	<0.5	<0.5	<450	<650
QC23	28/09/2016	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	-	<2	-	-	<1	<1	<1	<1	<1	<0.5	<1	<1	<1 <	<1	<1	<1	<1 <	1 <1	< 0.5	5 -	<20	<20	<20	<50	<100	<50	-	<100	<100	<100	<50	<100

Notes: Bold font is where > LOR

IS - Insufficient sample for a

					V	DC's							M	etals														Orga	nochl	orine P	esticio	les									
Local Per	SMEC opte. Global Experience.	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	Total BTEXN	Naphthalene	Arsenic (Filtered)	Cadmium (Filtered)	Chromium (III+VI) (Filtered)	Copper (Filtered)	Lead (Filtered)	Mercury (Filtered)	Nickel (Filtered)	Zinc (Filtered)	Alpha BHC	Aldrin	Chlordane	anehordane		d-BHC	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Lindane	Methoxychlor	Mirex	o,p-DDD	o,p'-DDE	DDD	рот	trans-Nonachlor
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/I	⊥µg/I	μg/	L μg/	Lμg	ς/L μg/	Ľμg	/L μg/	Lμg	/L μg/l	μg/	/L μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	.μg/L	μg/L	μg/L	μg/L	_μg/L	.μg/l	L μg/L	. μg/L	. μg/L	.μg/L
Field ID	Sampled Date														1	1														1			1		T	T		T		T	
M2	28/09/2016	1	<0.5					<3	<0.5		1.3	<1	4	<1	<0.1	20					_	.1 <0.3	_		_	1 < 0.1	_	_	_		<0.1					-	< 0.1	-		< 0.1	
QC22	28/09/2016	0.8	< 0.5	< 0.5	<1	< 0.5	<1.5	<3	< 0.5	<1	1.4	<1	4	<1	< 0.1	20	64	<0.3	1 <0).1 <0.	1 <0	.1 <0.3	1 <0	.1 <0.1	<0.	1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	l <0.1	<0.1	l <0.1	<0.1
RPD %		11	nc	nc	nc	nc	nc	nc	nc	nc	4	nc	0	nc	nc	0	2	nc	n	ic no	n	c nc	n	c nc	nc	c nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
M2	28/09/2016	1	< 0.5	< 0.5	<1	< 0.5	<1.5	<3	< 0.5	<1	1.3	<1	4	<1	< 0.1	20	67	<0.3	1 <0	0.1 <0.	1 <0	.1 <0.3	1 <0	.1 <0.1	<0.	1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	L <0.1	< 0.1	L <0.1	<0.1
QC23	28/09/2016	<1	<2	<2	<2	<2	<2	<1	<5	<1	1.4	<1	5	<1	< 0.1	20	72	<0.	5 <0	0.5 <0.	5 -	< 0.	5 <0	.5 <0.5	5 <0.	5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<2	-	-	-	< 0.5	5 <2	-
RPD %		nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	11	nc	nc	0	4	nc	n	ic no	-	nc	n	c nc	nc	c nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	-	-	-	nc	nc	-
QC22	28/09/2016	0.8	< 0.5	< 0.5	<1	< 0.5	<1.5	<3	< 0.5	<1	1.4	<1	4	<1	< 0.1	20	64	<0.3	1 <0).1 <0.	1 <0	.1 <0.1	1 <0	.1 <0.1	<0.	1 < 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	L <0.1	< 0.1	l <0.1	<0.1
QC23	28/09/2016	<1	<2	<2	<2	<2	<2	<1	<5	<1	1.4	<1	5	<1	<0.1	20	72	<0.	5 <0).5 <0.	5 -	< 0.1	5 <0	.5 <0.5	i <0.	5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<2	-	-	-	< 0.5	5 <2	-
RPD %	•	nc	nc	nc	nc	nc	nc	nc	nc	nc	0	nc	11	nc	nc	0	6	nc	n	ic no	-	· nc	n	c nc	nc	c nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	-	-	-	nc	nc	-

Notes: nc - not calculated

			Org	ganop	hospho	rous P	Pestici	ides												PA	н									Phenols						ТР	ч					
Azinophos methyl	Bromophos-ethyl	Chlorpyrifos	Diazinon	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Isodrin	Malathion	Methidathion	Parathion	1-Methylna phthalene	2-methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a) anthracene	Benzo(b+j)fluoranthene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Benzo(k) fluoran thene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	anthrene	Pyrene	Total PAHs	Total Phenols	C6 - C9	C6-C10	C6-C10 less BTEX (F1)	C10 - C14	C15 - C28	C29-C36	TRH C37-C40	C10-C16 (F2)	C16-C34 (F3)	C34-C40 (F4)	C10 - C36 (Total)	C10 - C40 (Total)
μg/I	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	L μg/L	. μg/	L μg/L	. μg/	′L μg/L	μg/L	. μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
< 0.2	< 0.2	<0.2	<0.5	< 0.5	<0.5	<0.2	< 0.2	< 0.1	<0.2	<0.5	<0.2	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	l <0.1	<0.	1 < 0.1	<0.	1 < 0.1	<0.1	<1	<10	<40	<50	<50	<50	<200	<200	<200	<60	<500	<500	<450	<650
< 0.2	< 0.2	<0.2	< 0.5	< 0.5	< 0.5	<0.2	< 0.2	< 0.1	<0.2	< 0.5	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	l <0.1	<0.	1 <0.1	<0.	1 < 0.1	< 0.1	<1	20	<40	<50	<50	<50	<200	<200	<0.2	<0.06	<0.5	<0.5	<450	<650
nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc
< 0.2	<0.2	<0.2	<0.5	< 0.5	< 0.5	<0.2	< 0.2	< 0.1	<0.2	<0.5	<0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.	1 < 0.1	<0.	1 < 0.1	< 0.1	<1	<10	<40	<50	<50	<50	<200	<200	<200	<60	<500	<500	<450	<650
< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	-	<2	-	-	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	< 0.5	-	<20	< 0.02	< 0.02	<50	<100	<50	-	<0.1	<0.1	<0.1	<50	<100
nc	nc	nc	nc	nc	nc	nc	-	-	nc	-	nc	-	-	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	-	nc	nc	nc	nc	nc	nc	-	nc	nc	nc	nc	nc
< 0.2	< 0.2	<0.2	< 0.5	< 0.5	<0.5	<0.2	< 0.2	< 0.1	< 0.2	< 0.5	<0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	l <0.1	<0.	1 <0.1	<0.	1 <0.1	< 0.1	<1	20	<40	<50	<50	<50	<200	<200	<0.2	<0.06	<0.5	<0.5	<450	<650
< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	-	-	<0.5	-	<2	-	-	<1	<1	<1	<1	<1	< 0.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	-	<20	<0.02	< 0.02	<50	<100	<50	-	<0.1	<0.1	<0.1	<50	<100
nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	-	-	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	-	nc	nc	nc	nc	nc	nc	-	nc	nc	nc	nc	nc

APPENDIX D – LABORATORY REPORTS

27/5/16 @T: 09	1																						
SGS					CHAIN	OF (cus	тоі	DY	& A	NALYS	sis	REG	QUEST						Pa	age 1	of 2	
SGS Environmental S	Services	Com	pany N	lame:	SMEC							Pr	oject N	lame/No:	300	2523 -	Cant	erra	Bric	kworks			
Unit 16, 33 Maddox S	treet	Add	ress:		Suite 2, Leve	el 1, 24	3 Nort	hbourr	ne Ave	enue, L	yneham,	Pi	urchase	e Order No:									
Alexandria NSW 2015					ACT, 2602, /	Austral	ia					R	esults F	Required By:		n O'Le							
Telephone No: (02) 8													elephon		+61	2 623	4 1963	3/04	400 2	40 023			
Facsimile No: (02) 8		Cont	tact Na	me:	Ryan O'Lear	у						-	acsimile								-		
Email: au samplereceipt.s	ydney@ags.com		<u> </u>	T	1 1	11	1	1				Er	nail Re	sults:	Ryan	1.0'Le	ary@s	mec.	.com				
Client Sample ID	Date Sampled	Lab Sample ID	wATER	SOIL	NO OF CONTAINERS	Asbestos ID	BTEXN	OPPs	OCPs	PHAs/Phenols	8 Metals - As, Cd, Cr, Cu, Ni, Pb, Zn . Hg	трн/ткн	On Hold									Comment	
M7_0.2-0.3	22/9/2016	1		1	Jar & Bag	$\overline{\mathbf{v}}$	1	$\overline{\mathbf{v}}$	1	V	1	\checkmark						1			n mor 17 57		
M7_0.9-1.0	22/9/2016		1	1	Jar		1		1				V			1	1	1					•1091.9 •
M8_0.2-0.3	22/9/2016	2	1	1	Jar & bag	\checkmark									SGS	EHS	Alexa	ndri II II II	ia La IIIIII	borato	ry		line
M8_0.7-0.8	22/9/2016	3		1	Jar		V	\checkmark	V	V	V	V											
M8_1.1-1.2	22/9/2016			1	Jar				1	1			V						, , , , , , , , , , , , , , , , , , ,	HH			
M8_1.6-1.7	22/9/2016			1	Jar	1	1	1	1				$\overline{\mathbf{v}}$		SE	157	54	5(CO	C			
M8_2.2-2.3	22/9/2016			1	Jar								$\overline{\mathbf{v}}$		Rece	ived:	23 -	Sep	-20	116			
M8_4.2-4.3	22/9/2016			1	Jar		1		1	1			V		T	i	1	1					
HA/GB1_0.15-0.25	22/9/2016	4	1	1	Jar	11	1		V	V	\checkmark	\checkmark					1	1				******	
W1	22/9/2016	5		1	Jar & bag	V			1	1	V	1											
Relinquished By: Ryan C	Leary /////	m	Date/T	ime: 2	22/9/2016 16:0	00			Ī	Recei	ved By:	×	8.	An	1	Date/	Time	5	23	09/10	G	010	0-50
Relinquished By:		/	Date/T	ïme:						Recei	ved By:		terre and the second se	<u>`</u>	1	Date/							
Samples Intact: Yes No)				e: Ambient / (le Cooler S					Labo	atory	Quo	otatic	n No:			
					AS PER SGS 3 – 2-IS DATE					STAN	DARD TA	T PL	EASE	(5 DAY)									

SGS					CHAIN (DF C	US	тог	DY 8	& A1	NALYS	sis	RE	QUE	ST					Pa	age 2 of 2		
SGS Environmental S	ervices	Com	bany N	ame:	SMEC							Pr	oject I	Name/N	lo:	3002	2523 -	Canbe	rra Bric	kworks			
Unit 16, 33 Maddox St	reet	Addr	ess:		Suite 2, Leve	1, 24	3 Nort	hbourn	e Ave	nue, L	yneham,	Pu	irchas	e Order	No:								
Alexandria NSW 2015					ACT, 2602, A	ustrali	а					Re	esults	Require	ed By:	Ryar	n O'Lea	ary					
Telephone No: (02) 85	940400											Te	lepho	ne:		+61	2 6234	1963	0400	240 023			
Facsimile No: (02) 85	940499	Cont	act Nar	ne:	Ryan O'Lean	/						- Fa	csimil	le:									
Email: au,samplereceipt sy	dney@sgs.cor	וז									-	En	nail R	esults:		Ryar	1.O'Lea	ry@sm	ec com				
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SolL	NO OF CONTAINERS	Asbestos ID	BTEXN	OPPs	OCPs	PAHs/Phenols	8H Metals - As, Cd, Cr, Cu, Ni, Pb, Zn , Hg	трнлткн	On Hold	РАН							Comment		
W2	22/9/2016	6		1	Jar & bag	V	V	V	V		V	\checkmark											
W3	22/9/2016	7		1	Jar & bag	V	V	V	V	V	V	\checkmark											
W1	22/9/2016	8	1		Bottles				V	1	1	1											
W2	22/9/2016	9	1		Bottles		1		V	V	1												
W3	22/9/2016	10	1		Bottles		1	V	V	V	\checkmark	$\overline{\mathbf{v}}$											
QC 18 (Trip Blank)	22/9/2016	u			Vial		1					V		$\overline{\mathbf{v}}$									
QC 19 (Trip Spike)	22/9/2016	12		1	Vial							V		1									
Relinquished By: Ryan O	Leary ALV	2	Date/T	ime: 2	22/9/2016 16:0	0				Receiv	ved By:	A	Se	Dul		1	Date/	Time	23	109	116 @	P 1	0.50
Relinquished By:		1	Date/T	ime:						Receiv	ved By:	1		1		-	Date/7	ſime	and Market Market				
Samples Intact: Yes/ No			Tempe	rature	e: Ambient / (hilled				Samp	le Cooler	Seale	ed: \	(es/ No	1		Labor	atory C	Quotati	on No:	an talan sa		
			Comm	ents:	AS PER SGS	QUOT	ENU	MBER		STAN	DARD TA	TPL	EAS	E (5 DA	Y)		24a						
			SY1 -	6041:	3 – 2-IS DATE	ED 13 ¹	^H APF	RIL 20	16						and a state of the						weeks and a set		

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	NLS	
Contact	Ryan O'Leary	Manager	Huong Crawford	
Client	SMEC AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental	
Address	Sun Micro Building Suite 2, Level 1 243 Northbourne Avenue ACT 2602	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	02 6234 1963	Telephone	+61 2 8594 0400	
Facsimile	02 6234 1966	Facsimile	+61 2 8594 0499	
Email	Ryan.O'Leary@smec.com	Email	au.environmental.sydney@sgs.com	
Project	3002523 - Canberra Brickworks	Samples Received	Fri 23/9/2016	
Order Number	SY1-60413-2-IS	Report Due	Wed 5/10/2016	
Samples	12	SGS Reference	SE157545	

_ SUBMISSION DETAILS

This is to confirm that 12 samples were received on Friday 23/9/2016. Results are expected to be ready by Wednesday 5/10/2016. Please quote SGS reference SE157545 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received 9 Soil, 3 Water 27/9/16@5:09pm Yes SGS Yes Ice Bricks Yes Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled Number of eskies/boxes received COC Yes 8.3°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS

COC received at 27/9/16 @ 5:09pm. Request was not registered until the next business day.

5 soil samples have been placed on hold.

For W3, 125mL H2SO4 P/B was not received. Total Phenols will not be analysed.

One vial received broken for W2.

Trip Blank and Spike will only be analyzed for TRH/BTEX and BTEX respectively.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

__ CLIENT DETAILS __

Client SMEC AUSTRALIA PTY LTD

Project 3002523 - Canberra Brickworks

MMARY	OF ANALYSIS								
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	Total Phenolics in Soil	Total Recoverable Metals in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	M7_0.2-0.3	28	13	26	1	7	10	12	8
003	M8_0.7-0.8	28	13	26	1	7	10	12	8
004	HA/GB1_0.15-0.25	28	13	26	1	7	10	12	8
005	W1	28	13	26	1	7	10	12	8
006	W2	28	13	26	1	7	10	12	8
007	W3	28	13	26	1	7	10	12	8
011	QC18 (Trip Blank)	-	-	-	-	-	10	12	8
012	QC19 (Trip Spike)	-	-	-	-	-	-	12	-

SAMPLE RECEIPT ADVICE

___ CLIENT DETAILS __

Client SMEC AUSTRALIA PTY LTD

Project 3002523 - Canberra Brickworks

UNIMAI	Y OF ANALYSIS					
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	M7_0.2-0.3	2	1	1	-	-
002	M8_0.2-0.3	2	-	-	-	-
003	M8_0.7-0.8	-	1	1	-	-
004	HA/GB1_0.15-0.25	-	1	1	-	-
005	W1	2	1	1	-	-
006	W2	2	1	1	-	-
007	W3	2	1	1	-	-
008	W1	-	-	-	12	8
009	W2	-	-	-	12	8
010	W3	-	-	-	12	8
011	QC18 (Trip Blank)	-	-	1	-	-

_ CONTINUED OVERLEAF

SAMPLE RECEIPT ADVICE

SE157545

__ CLIENT DETAILS __

Client SMEC AUSTRALIA PTY LTD

Project 3002523 - Canberra Brickworks

SUMMARY	OF ANALYSIS							
No.	Sample ID	Mercury (dissolved) in Water	OC Pesticides in Water	OP Pesticides in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Total Phenolics in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water
008	W1	1	28	13	22	1	7	9
009	W2	1	28	13	22	1	7	9
010	W3	1	28	13	22	-	7	9

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

ntact	Ryan O'Leary	Manager	Huong Crawford
ent	SMEC AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
ress	Sun Micro Building Suite 2, Level 1 243 Northbourne Avenue ACT 2602	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
phone	02 6234 1963	Telephone	+61 2 8594 0400
simile	02 6234 1966	Facsimile	+61 2 8594 0499
il	Ryan.O'Leary@smec.com	Email	au.environmental.sydney@sgs.com
ect	3002523 - Canberra Brickworks	SGS Reference	SE157545 R0
ler Number	SY1-60413-2-IS	Date Received	23/9/2016
ples	12	Date Reported	11/10/2016

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES -

Ady Sith

Andy Sutton Senior Organic Chemist

Kamrul Ahsan Senior Chemist

Bennet Lo Senior Organic Chemist/Metals Chemist

kmln

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Member of the SGS Group Page 1 of 24

SE157545 R0

VOC's in Soil [AN433] Tested: 29/9/2016

			M7_0.2-0.3	M8_0.7-0.8	HA/GB1_0.15-0.25	W1	W2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
				22/9/2016	22/9/2016	22/9/2016	22/9/2016
PARAMETER	UOM	LOR	SE157545.001	SE157545.003	SE157545.004	SE157545.005	SE157545.006
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			W3	QC18 (Trip Blank)	QC19 (Trip Spike)
			SOIL	SOIL	SOIL
			- 22/9/2016	- 22/9/2016	- 22/9/2016
PARAMETER	UOM	LOR	SE157545.007	SE157545.011	SE157545.012
Benzene	mg/kg	0.1	<0.1	<0.1	[79%]
Toluene	mg/kg	0.1	<0.1	<0.1	[80%]
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	[93%]
m/p-xylene	mg/kg	0.2	<0.2	<0.2	[84%]
o-xylene	mg/kg	0.1	<0.1	<0.1	[98%]
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	-
Total BTEX	mg/kg	0.6	<0.6	<0.6	-
Naphthalene	mg/kg	0.1	<0.1	<0.1	-

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 29/9/2016

			M7_0.2-0.3	M8_0.7-0.8	HA/GB1_0.15-0.25	W1	W2
			SOIL	SOIL	SOIL	SOIL	SOIL
			22/9/2016	22/9/2016	22/9/2016	22/9/2016	22/9/2016
PARAMETER	UOM	LOR	SE157545.001	SE157545.003	SE157545.004	SE157545.005	SE157545.006
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			W3	QC18 (Trip Blank)
			SOIL	SOIL
PARAMETER	UOM	LOR	SE157545.007	SE157545.011
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403]

Tested: 29/9/2016

			M7_0.2-0.3	M8_0.7-0.8	HA/GB1_0.15-0.25	W1	W2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			22/9/2016	22/9/2016	22/9/2016	22/9/2016	22/9/2016
PARAMETER	UOM	LOR	SE157545.001	SE157545.003	SE157545.004	SE157545.005	SE157545.006
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			W3	QC18 (Trip Blank)
			SOIL - 22/9/2016	SOIL - 22/9/2016
PARAMETER	UOM	LOR	SE157545.007	SE157545.011
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 29/9/2016

			M7_0.2-0.3	M8_0.7-0.8	HA/GB1_0.15-0.25	W1	W2
			SOIL	SOIL	SOIL	SOIL	SOIL
						22/9/2016	22/9/2016
PARAMETER	UOM	LOR	SE157545.001	SE157545.003	SE157545.004	SE157545.005	SE157545.006
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			W3
			SOIL - 22/9/2016
PARAMETER	UOM	LOR	SE157545.007
Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8

SE157545 R0

OC Pesticides in Soil [AN400/AN420] Tested: 29/9/2016

PARAMETERUOMLOR22Hexachlorobenzene (HCB)mg/kg0.1Alpha BHCmg/kg0.1Lindanemg/kg0.1Heptachlormg/kg0.1Aldrinmg/kg0.1Beta BHCmg/kg0.1	SOIL SOIL '9/2016 22/9/2016 7545.001 SE157545.003 \$0.1 <0.1 \$0.1 <0.1 \$0.1 <0.1 \$0.1 <0.1 \$0.1 <0.1 \$0.1 <0.1 \$0.1 <0.1 \$0.1 <0.1 \$0.1 <0.1 \$0.1 <0.1 \$0.1 <0.1	SOIL - 22/9/2016 SE157545.004 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	SOIL - 22/9/2016 SE157545.005 <0.1 <0.1 <0.1 <0.1	SOIL - 22/9/2016 SE157545.006 <0.1 <0.1 <0.1 <0.1
PARAMETER UOM LOR 22 SE112 Hexachlorobenzene (HCB) mg/kg 0.1 1 Alpha BHC mg/kg 0.1 1 Lindane mg/kg 0.1 1 Heptachlor mg/kg 0.1 1 Aldrin mg/kg 0.1 1 Beta BHC mg/kg 0.1 1	9/2016 22/9/2016 77545.001 SE157545.003 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- 22/9/2016 SE157545.004 <0.1 <0.1 <0.1 <0.1 <0.1	- 22/9/2016 SE157545.005 <0.1 <0.1 <0.1 <0.1	- 22/9/2016 SE157545.006 <0.1 <0.1 <0.1
PARAMETERUOMLORSE18Hexachlorobenzene (HCB)mg/kg0.1-Alpha BHCmg/kg0.1-Lindanemg/kg0.1-Heptachlormg/kg0.1-Aldrinmg/kg0.1-Beta BHCmg/kg0.1-	7545.001 SE157545.003 c0.1 <0.1	SE157545.004 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	SE157545.005 <0.1 <0.1 <0.1 <0.1	SE157545.006 <0.1 <0.1 <0.1
Hexachlorobenzene (HCB)mg/kg0.1Alpha BHCmg/kg0.1Lindanemg/kg0.1Heptachlormg/kg0.1Aldrinmg/kg0.1Beta BHCmg/kg0.1	c0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Alpha BHC mg/kg 0.1 ··· Lindane mg/kg 0.1 ·· Heptachlor mg/kg 0.1 ·· Aldrin mg/kg 0.1 ·· Beta BHC mg/kg 0.1 ··	<0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1
Lindane mg/kg 0.1 Heptachlor mg/kg 0.1 Aldrin mg/kg 0.1 Beta BHC mg/kg 0.1	<0.1	<0.1 <0.1 <0.1	<0.1	<0.1
Heptachlor mg/kg 0.1 ··· Aldrin mg/kg 0.1 ·· Beta BHC mg/kg 0.1 ··	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1	<0.1	
Aldrin mg/kg 0.1 Beta BHC mg/kg 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1		<0.1
Beta BHC mg/kg 0.1	<0.1 <0.1		<0.1	
		<0.1	-0.1	<0.1
Delta BHC mg/kg 0.1	<0.1 <0.1		<0.1	<0.1
		<0.1	<0.1	<0.1
Heptachlor epoxide mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
o,p'-DDE mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
Alpha Endosulfan mg/kg 0.2	<0.2 <0.2	<0.2	<0.2	<0.2
Gamma Chlordane mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
Alpha Chlordane mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
trans-Nonachlor mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
p,p'-DDE mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
Dieldrin mg/kg 0.2	<0.2 <0.2	<0.2	<0.2	<0.2
Endrin mg/kg 0.2	<0.2 <0.2	<0.2	<0.2	<0.2
o,p'-DDD mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
o,p'-DDT mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
Beta Endosulfan mg/kg 0.2	<0.2 <0.2	<0.2	<0.2	<0.2
p,p'-DDD mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
p,p'-DDT mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
Endosulfan sulphate mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
Endrin Aldehyde mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
Methoxychlor mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
Endrin Ketone mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
Isodrin mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1
Mirex mg/kg 0.1	<0.1 <0.1	<0.1	<0.1	<0.1

SE157545 R0

OC Pesticides in Soil [AN400/AN420] Tested: 29/9/2016 (continued)

			W3
			SOIL
PARAMETER	UOM	LOR	22/9/2016 SE157545.007
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1

OP Pesticides in Soil [AN400/AN420] Tested: 29/9/2016

			M7_0.2-0.3	M8_0.7-0.8	HA/GB1_0.15-0.25	W1	W2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			22/9/2016	22/9/2016	22/9/2016	22/9/2016	22/9/2016
PARAMETER	UOM	LOR	SE157545.001	SE157545.003	SE157545.004	SE157545.005	SE157545.006
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

PARAMETER	UOM	LOR	W3 SOIL - 22/9/2016 SE157545.007
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2

Total Phenolics in Soil [AN289] Tested: 29/9/2016

			M7_0.2-0.3	M8_0.7-0.8	HA/GB1_0.15-0.25	W1	W2
			SOIL	SOIL	SOIL	SOIL	SOIL
						22/9/2016	22/9/2016
PARAMETER	UOM	LOR	SE157545.001	SE157545.003	SE157545.004	SE157545.005	SE157545.006
Total Phenois	mg/kg	0.1	2.3	<0.1	<0.1	<0.1	0.4

			W3
			SOIL
PARAMETER	UOM	LOR	SE157545.007
Total Phenols	mg/kg	0.1	1.8

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 4/10/2016

			M7_0.2-0.3	M8_0.7-0.8	HA/GB1_0.15-0.25	W1	W2
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	22/9/2016 SE157545.001	22/9/2016 SE157545.003	22/9/2016 SE157545.004	22/9/2016 SE157545.005	22/9/2016 SE157545.006
Arsenic, As	mg/kg	3	3	9	7	12	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	33	24	14	17	9.7
Copper, Cu	mg/kg	0.5	13	12	14	15	12
Lead, Pb	mg/kg	1	19	54	28	33	22
Nickel, Ni	mg/kg	0.5	9.8	13	21	16	7.9
Zinc, Zn	mg/kg	0.5	26	58	22	78	34

			W3
			SOIL
PARAMETER	UOM	LOR	SE157545.007
Arsenic, As	mg/kg	3	5
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.3	14
Copper, Cu	mg/kg	0.5	11
Lead, Pb	mg/kg	1	25
Nickel, Ni	mg/kg	0.5	9.4
Zinc, Zn	mg/kg	0.5	44

Mercury in Soil [AN312] Tested: 4/10/2016

			M7_0.2-0.3	M8_0.7-0.8	HA/GB1_0.15-0.25	W1	W2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						22/9/2016	22/9/2016
PARAMETER	UOM	LOR	SE157545.001	SE157545.003	SE157545.004	SE157545.005	SE157545.006
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			W3
			SOIL
			- 22/9/2016
PARAMETER	UOM	LOR	SE157545.007
Mercury	mg/kg	0.05	<0.05

Moisture Content [AN002] Tested: 30/9/2016

			M7_0.2-0.3	M8_0.7-0.8	HA/GB1_0.15-0.25	W1	W2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
						22/9/2016	22/9/2016
PARAMETER	UOM	LOR	SE157545.001	SE157545.003	SE157545.004	SE157545.005	SE157545.006
% Moisture	%w/w	0.5	20	16	8.9	26	20

			W3	QC18 (Trip Blank)
			SOIL	SOIL
				- 22/9/2016
PARAMETER	UOM	LOR	SE157545.007	SE157545.011
% Moisture	%w/w	0.5	24	<0.5

Fibre Identification in soil [AN602] Tested: 4/10/2016

			M7_0.2-0.3	M8_0.2-0.3	W1	W2	W3
			SOIL	SOIL	SOIL	SOIL	SOIL
			22/9/2016	22/9/2016	22/9/2016	22/9/2016	22/9/2016
PARAMETER	UOM	LOR	SE157545.001	SE157545.002	SE157545.005	SE157545.006	SE157545.007
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

VOCs in Water [AN433] Tested: 30/9/2016

			W1	W2	W3
			WATER - 22/9/2016	WATER - 22/9/2016	WATER - 22/9/2016
PARAMETER	UOM	LOR	SE157545.008	SE157545.009	SE157545.010
Benzene	µg/L	0.5	<0.5	<0.5	<0.5
Toluene	µg/L	0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3	<3
Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 30/9/2016

			W1	W2	W3
			WATER	WATER	WATER
			-	-	-
PARAMETER	UOM	LOR	22/9/2016 SE157545.008	22/9/2016 SE157545.009	22/9/2016 SE157545.010
TRH C6-C9	μg/L	40	<40	<40	<40
			-		-
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 29/9/2016

			W1	W2	W3
			WATER	WATER	WATER
			- 22/9/2016	- 22/9/2016	- 22/9/2016
PARAMETER	UOM	LOR	SE157545.008	SE157545.009	SE157545.010
TRH C10-C14	µg/L	50	<50	<50	<50
TRH C15-C28	μg/L	200	<200	<200	<200
TRH C29-C36	μg/L	200	<200	<200	<200
TRH C37-C40	μg/L	200	<200	<200	<200
TRH >C10-C16 (F2)	μg/L	60	<60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500
TRH C10-C36	µg/L	450	<450	<450	<450
TRH C10-C40	µg/L	650	<650	<650	<650

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 29/9/2016

			W1	W2	W3
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE157545.008	SE157545.009	SE157545.010
Naphthalene	µg/L	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	μg/L	0.1	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	μg/L	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	μg/L	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	μg/L	0.1	<0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1	<1

OC Pesticides in Water [AN400/AN420] Tested: 29/9/2016

			WATER		
			WATER -	WATER	WATER
					22/9/2016
PARAMETER	UOM	LOR	SE157545.008	SE157545.009	SE157545.010
Hexachlorobenzene (HCB)	µg/L	0.1	<0.1	<0.1	<0.1
Alpha BHC	µg/L	0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	µg/L	0.1	<0.1	<0.1	<0.1
Heptachlor	µg/L	0.1	<0.1	<0.1	<0.1
Aldrin	µg/L	0.1	<0.1	<0.1	<0.1
Beta BHC	µg/L	0.1	<0.1	<0.1	<0.1
Delta BHC	µg/L	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	µg/L	0.1	<0.1	<0.1	<0.1
o,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1
Gamma Chlordane	µg/L	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	µg/L	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	µg/L	0.1	<0.1	<0.1	<0.1
p,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1
Dieldrin	µg/L	0.1	<0.1	<0.1	<0.1
Endrin	µg/L	0.1	<0.1	<0.1	<0.1
o,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1
o,p'-DDT	µg/L	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1
p,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1
p,p'-DDT	µg/L	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	µg/L	0.1	<0.1	<0.1	<0.1
Endrin aldehyde	µg/L	0.1	<0.1	<0.1	<0.1
Methoxychlor	µg/L	0.1	<0.1	<0.1	<0.1
Endrin ketone	µg/L	0.1	<0.1	<0.1	<0.1
Isodrin	µg/L	0.1	<0.1	<0.1	<0.1
Mirex	µg/L	0.1	<0.1	<0.1	<0.1

OP Pesticides in Water [AN400/AN420] Tested: 29/9/2016

			W1	W2	W3
			WATER	WATER	WATER
			- 22/9/2016	- 22/9/2016	- 22/9/2016
PARAMETER	UOM	LOR	SE157545.008	SE157545.009	SE157545.010
Dichlorvos	µg/L	0.5	<0.5	<0.5	<0.5
Dimethoate	µg/L	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	μg/L	0.5	<0.5	<0.5	<0.5
Fenitrothion	μg/L	0.2	<0.2	<0.2	<0.2
Malathion	μg/L	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	μg/L	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	µg/L	0.2	<0.2	<0.2	<0.2
Methidathion	μg/L	0.5	<0.5	<0.5	<0.5
Ethion	µg/L	0.2	<0.2	<0.2	<0.2
Azinphos-methyl	μg/L	0.2	<0.2	<0.2	<0.2

Total Phenolics in Water [AN289] Tested: 30/9/2016

			W1	W2	W3
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE157545.008	SE157545.009	SE157545.010
Total Phenols	mg/L	0.01	<0.01	<0.01	IS

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 29/9/2016

			W1	W2	W3
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE157545.008	SE157545.009	SE157545.010
Arsenic, As	µg/L	1	1	<1	<1
Cadmium, Cd	µg/L	0.1	<0.1	<0.1	<0.1
Chromium, Cr	µg/L	1	<1	<1	<1
Copper, Cu	µg/L	1	<1	1	1
Lead, Pb	µg/L	1	<1	<1	<1
Nickel, Ni	µg/L	1	1	<1	1
Zinc, Zn	µg/L	5	25	5	22

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 4/10/2016

			W1	W2	W3
			WATER	WATER	WATER
				22/9/2016	22/9/2016
PARAMETER	UOM	LOR	SE157545.008	SE157545.009	SE157545.010
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).

METHOD SUMMARY

AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Ryan O'Leary	Manager	Huong Crawford
Client	SMEC AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Sun Micro Building Suite 2, Level 1 243 Northbourne Avenue ACT 2602	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 6234 1963	Telephone	+61 2 8594 0400
Facsimile	02 6234 1966	Facsimile	+61 2 8594 0499
Email	Ryan.O'Leary@smec.com	Email	au.environmental.sydney@sgs.com
Project	3002523 - Canberra Brickworks	SGS Reference	SE157545 R0
Order Number	SY1-60413-2-IS	Date Received	23 Sep 2016
Samples	12	Date Reported	11 Oct 2016

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date	VOCs in Water	3 items
	Volatile Petroleum Hydrocarbons in Water	3 items
Duplicate	VOCs in Water	1 item
	Volatile Petroleum Hydrocarbons in Water	1 item

Sample counts by matrix	9 Soil, 3 Water	Type of documentation received	COC	
Date documentation received	27/9/16@5:09pm	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	8.3°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes	Number of eskies/boxes received		

Unit 16 33 Maddox St

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia

www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil							Method:	ME-(AU)-[ENV]AN6
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M7_0.2-0.3	SE157545.001	LB111013	22 Sep 2016	23 Sep 2016	22 Sep 2017	04 Oct 2016	22 Sep 2017	05 Oct 2016
M8_0.2-0.3	SE157545.002	LB111013	22 Sep 2016	23 Sep 2016	22 Sep 2017	04 Oct 2016	22 Sep 2017	05 Oct 2016
W1	SE157545.005	LB111013	22 Sep 2016	23 Sep 2016	22 Sep 2017	04 Oct 2016	22 Sep 2017	05 Oct 2016
W2	SE157545.006	LB111013	22 Sep 2016	23 Sep 2016	22 Sep 2017	04 Oct 2016	22 Sep 2017	05 Oct 2016
W3	SE157545.007	LB111013	22 Sep 2016	23 Sep 2016	22 Sep 2017	04 Oct 2016	22 Sep 2017	05 Oct 2016
Mercury (dissolved) in Wate	r						Method: ME-(AU)-[EN\	/JAN311(Perth)/AN3
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
W1	SE157545.008	LB110970	22 Sep 2016	23 Sep 2016	20 Oct 2016	04 Oct 2016	20 Oct 2016	05 Oct 2016
W2	SE157545.009	LB110970	22 Sep 2016	23 Sep 2016	20 Oct 2016	04 Oct 2016	20 Oct 2016	05 Oct 2016
W3	SE157545.010	LB110970	22 Sep 2016	23 Sep 2016	20 Oct 2016	04 Oct 2016	20 Oct 2016	05 Oct 2016
Mercury in Soil							Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M7_0.2-0.3	SE157545.001	LB110977	22 Sep 2016	23 Sep 2016	20 Oct 2016	04 Oct 2016	20 Oct 2016	05 Oct 2016
M8_0.7-0.8	SE157545.003	LB110977	22 Sep 2016	23 Sep 2016	20 Oct 2016	04 Oct 2016	20 Oct 2016	05 Oct 2016
HA/GB1_0.15-0.25	SE157545.004	LB110977	22 Sep 2016	23 Sep 2016	20 Oct 2016	04 Oct 2016	20 Oct 2016	05 Oct 2016
W1	SE157545.005	LB110977	22 Sep 2016	23 Sep 2016	20 Oct 2016	04 Oct 2016	20 Oct 2016	05 Oct 2016
W2	SE157545.006	LB110977	22 Sep 2016	23 Sep 2016	20 Oct 2016	04 Oct 2016	20 Oct 2016	05 Oct 2016
W3	SE157545.007	LB110977	22 Sep 2016	23 Sep 2016	20 Oct 2016	04 Oct 2016	20 Oct 2016	05 Oct 2016
Molsture Content	02101010.001	20110011	22 000 2010	20 000 2010	20 000 2010	0100(2010		ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M7_0.2-0.3	SE157545.001	LB110857	22 Sep 2016	23 Sep 2016	06 Oct 2016	30 Sep 2016	05 Oct 2016	05 Oct 2016
M8_0.7-0.8	SE157545.003	LB110857	22 Sep 2010	23 Sep 2010	06 Oct 2016	30 Sep 2016	05 Oct 2016	05 Oct 2016
HA/GB1_0.15-0.25	SE157545.004	LB110857	22 Sep 2010	23 Sep 2010	06 Oct 2016	30 Sep 2016	05 Oct 2016	05 Oct 2016
W1	SE157545.005	LB110857	22 Sep 2016	23 Sep 2016	06 Oct 2016	30 Sep 2016	05 Oct 2016	05 Oct 2016
W2	SE157545.006	LB110857	22 Sep 2016	23 Sep 2016	06 Oct 2016	30 Sep 2016	05 Oct 2016	05 Oct 2016
W3	SE157545.007	LB110857	22 Sep 2016	23 Sep 2016	06 Oct 2016	30 Sep 2016	05 Oct 2016	
QC18 (Trip Blank)	SE157545.011	LB110857	22 Sep 2016	23 Sep 2016	06 Oct 2016	30 Sep 2016	05 Oct 2016	05 Oct 2016 05 Oct 2016
	3E157545.011	LB110037	22 Sep 2010	23 Sep 2010	00 001 2010	30 Sep 2010		
OC Pesticides in Soil		00 B (J)-[ENV]AN400/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M7_0.2-0.3	SE157545.001	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
M8_0.7-0.8	SE157545.003	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
HA/GB1_0.15-0.25	SE157545.004	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
W1	SE157545.005	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
W2	SE157545.006	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
W3	SE157545.007	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
QC18 (Trip Blank)	SE157545.011	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
OC Pesticides in Water							Method: ME-(AL	J)-[ENV]AN400/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
W1	SE157545.008	LB110738	22 Sep 2016	23 Sep 2016	29 Sep 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
W2	SE157545.009	LB110738	22 Sep 2016	23 Sep 2016	29 Sep 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
W3	SE157545.010	LB110738	22 Sep 2016	23 Sep 2016	29 Sep 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
OP Pesticides in Soil							Method: ME-(AL	J)-[ENV]AN400/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M7_0.2-0.3	SE157545.001	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
 M8_0.7-0.8	SE157545.003	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
HA/GB1_0.15-0.25	SE157545.004	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
W1	SE157545.005	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
W2	SE157545.006	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
W3	SE157545.007	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
QC18 (Trip Blank)	SE157545.011	LB110824	22 Sep 2016	23 Sep 2016	06 Oct 2016	29 Sep 2016	08 Nov 2016	05 Oct 2016
OP Pesticides in Water								J)-[ENV]AN400/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
W1	SE157545.008	LB110738	22 Sep 2016	23 Sep 2016	29 Sep 2016	29 Sep 2016	08 Nov 2016	30 Sep 2016
W2	SE157545.009	LB110738	22 Sep 2016	23 Sep 2016	29 Sep 2010	29 Sep 2016	08 Nov 2016	30 Sep 2016
	02101040.000	20110/00	22 000 2010	20 000 2010	20 000 2010	20 000 2010	001101 2010	00 Och 2010

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420 Sample Name Sample No. Extraction Due Analysed QC Ref Sampled Received Extracted Analysis Due M7 0 2-0 3 SE157545 001 I B110824 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 05 Oct 2016 M8_0.7-0.8 LB110824 SE157545.003 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 05 Oct 2016 HA/GB1 0.15-0.25 SE157545.004 LB110824 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 05 Oct 2016 W1 SE157545.005 LB110824 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 05 Oct 2016 W2 SE157545.006 LB110824 08 Nov 2016 05 Oct 2016 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 W3 SE157545.007 LB110824 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 05 Oct 2016 QC18 (Trip Blank) SE157545.011 LB110824 22 Sep 2016 06 Oct 2016 08 Nov 2016 23 Sep 2016 29 Sep 2016 05 Oct 2016 PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-/ENV/AN420 Analysis Due Analysed Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted W1 SE157545.008 LB110738 22 Sep 2016 23 Sep 2016 29 Sep 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 W2 SE157545.009 LB110738 22 Sep 2016 23 Sep 2016 29 Sep 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 W3 SE157545.010 LB110738 22 Sep 2016 23 Sep 2016 29 Sep 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 **Total Phenolics in Soil** Method: ME-(AU)-[ENV]AN289 Sampled Sample Name Sample No. QC Ref Received Extraction Due Extracted Analysis Due Analysed M7 0.2-0.3 SE157545.001 LB110743 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 06 Oct 2016 05 Oct 2016 M8_0.7-0.8 SE157545.003 LB110743 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 06 Oct 2016 05 Oct 2016 HA/GB1 0.15-0.25 SE157545.004 LB110743 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 06 Oct 2016 05 Oct 2016 W1 SE157545.005 LB110743 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 06 Oct 2016 05 Oct 2016 W2 LB110743 23 Sep 2016 06 Oct 2016 SE157545.006 22 Sep 2016 06 Oct 2016 29 Sep 2016 05 Oct 2016 W3 SE157545.007 LB110743 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 06 Oct 2016 05 Oct 2016 Total Phenolics in Water Method: ME-(AU)-[ENVIAN289 Sample Name Sample No. QC Ref Sampled Received Extraction Du Extracted Analysis Due Analysed W1 SE157545.008 LB110849 22 Sep 2016 23 Sep 2016 20 Oct 2016 30 Sep 2016 20 Oct 2016 30 Sep 2016 W2 SE157545.009 LB110849 22 Sep 2016 23 Sep 2016 20 Oct 2016 30 Sep 2016 30 Sep 2016 20 Oct 2016 Total Recoverable Metals in Soil/Wa ste Solids/Mat ils by ICPOES Method: ME-(AU)-IENVIAN040/AN320 Sample Name Sampled Sample No. QC Ref Received Extraction Due Extracted Analysis Due Analysed M7 0 2-0 3 SE157545 001 LB111001 22 Sep 2016 23 Sep 2016 21 Mar 2017 04 Oct 2016 21 Mar 2017 11 Oct 2016 M8_0.7-0.8 SE157545.003 LB111001 22 Sep 2016 23 Sep 2016 21 Mar 2017 04 Oct 2016 21 Mar 2017 11 Oct 2016 HA/GB1_0.15-0.25 21 Mar 2017 SE157545.004 LB111001 22 Sep 2016 23 Sep 2016 04 Oct 2016 21 Mar 2017 11 Oct 2016 W1 SE157545.005 LB111001 22 Sep 2016 23 Sep 2016 21 Mar 2017 04 Oct 2016 21 Mar 2017 11 Oct 2016 W2 SE157545.006 LB111001 22 Sep 2016 23 Sep 2016 21 Mar 2017 04 Oct 2016 21 Mar 2017 11 Oct 2016 W3 SE157545.007 LB111001 22 Sep 2016 23 Sep 2016 21 Mar 2017 04 Oct 2016 21 Mar 2017 11 Oct 2016 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Name Received Extraction Due Analysis Due Analysed Sample No. QC Ref Sampled Extracted W1 SE157545.008 LB110745 22 Sep 2016 23 Sep 2016 21 Mar 2017 29 Sep 2016 21 Mar 2017 29 Sep 2016 W2 SE157545 009 I B110745 22 Sep 2016 23 Sep 2016 21 Mar 2017 29 Sep 2016 21 Mar 2017 29 Sep 2016 29 Sep 2016 W3 SE157545.010 LB110745 22 Sep 2016 23 Sep 2016 21 Mar 2017 21 Mar 2017 29 Sep 2016 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-/ENVIAN403 Analysed Sample Name Sample No. QC Ref Sampled Received **Extraction Due** Extracted Analysis Due M7 0.2-0.3 SE157545.001 LB110824 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 05 Oct 2016 M8 0.7-0.8 SE157545.003 LB110824 22 Sep 2016 23 Sep 2016 06 Oct 2016 08 Nov 2016 05 Oct 2016 29 Sep 2016 HA/GB1 0.15-0.25 SE157545.004 LB110824 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 05 Oct 2016 W1 SE157545.005 LB110824 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 05 Oct 2016 W2 SE157545.006 LB110824 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 05 Oct 2016 W3 SE157545.007 LB110824 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 05 Oct 2016 23 Sep 2016 LB110824 06 Oct 2016 08 Nov 2016 QC18 (Trip Blank) SE157545.011 22 Sep 2016 29 Sep 2016 05 Oct 2016 TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed 29 Sep 2016 W1 SE157545.008 LB110738 22 Sep 2016 23 Sep 2016 08 Nov 2016 29 Sep 2016 30 Sep 2016 W2 SE157545.009 LB110738 22 Sep 2016 23 Sep 2016 29 Sep 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 W3 SE157545.010 LB110738 22 Sep 2016 23 Sep 2016 29 Sep 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Name QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed Sample No. 30 Sep 2016 M7 0.2-0.3 SE157545 001 LB110735 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 M8 0.7-0.8 SE157545.003 LB110735 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 HA/GB1 0.15-0.25 SE157545.004 LB110735 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Sample No. Sampled Sample Name QC Ref Extraction Due Analysis Due Analysed Received Extracted W1 SE157545.005 LB110735 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 W2 SE157545.006 LB110735 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 W3 SE157545.007 LB110735 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 08 Nov 2016 QC18 (Trip Blank) LB110735 23 Sep 2016 SE157545.011 22 Sep 2016 06 Oct 2016 29 Sep 2016 30 Sep 2016 SE157545.012 LB110735 06 Oct 2016 08 Nov 2016 QC19 (Trip Spike) 22 Sep 2016 23 Sep 2016 29 Sep 2016 30 Sep 2016 VOCs in Water Method: ME-(AU)-[ENV]AN433 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed LB110850 W1 SE157545.008 22 Sep 2016 23 Sep 2016 29 Sep 2016 30 Sep 2016† 09 Nov 2016 04 Oct 2016 W2 SE157545 009 LB110850 22 Sep 2016 23 Sep 2016 29 Sep 2016 30 Sep 2016† 09 Nov 2016 04 Oct 2016 W3 SE157545.010 LB110850 22 Sep 2016 23 Sep 2016 29 Sep 2016 30 Sep 2016† 09 Nov 2016 04 Oct 2016 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Analysis Due Analysed Sample Name Extraction Due QC Ref Sampled Received Extracted Sample No. M7 0.2-0.3 SE157545.001 LB110735 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 M8_0.7-0.8 SE157545.003 LB110735 22 Sep 2016 23 Sep 2016 06 Oct 2016 30 Sep 2016 29 Sep 2016 08 Nov 2016 HA/GB1 0.15-0.25 SE157545.004 LB110735 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 W1 SE157545.005 LB110735 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 W2 SE157545.006 LB110735 08 Nov 2016 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 30 Sep 2016 W3 SE157545.007 LB110735 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 QC18 (Trip Blank) LB110735 23 Sep 2016 08 Nov 2016 SE157545.011 22 Sep 2016 06 Oct 2016 29 Sep 2016 30 Sep 2016 QC19 (Trip Spike) SE157545.012 LB110735 22 Sep 2016 23 Sep 2016 06 Oct 2016 29 Sep 2016 08 Nov 2016 30 Sep 2016 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
W1	SE157545.008	LB110850	22 Sep 2016	23 Sep 2016	29 Sep 2016	30 Sep 2016†	09 Nov 2016	04 Oct 2016
W2	SE157545.009	LB110850	22 Sep 2016	23 Sep 2016	29 Sep 2016	30 Sep 2016†	09 Nov 2016	04 Oct 2016
W3	SE157545.010	LB110850	22 Sep 2016	23 Sep 2016	29 Sep 2016	30 Sep 2016†	09 Nov 2016	04 Oct 2016

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil				Method: ME-(AU)-[E	NVJAN400/AI
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	M7_0.2-0.3	SE157545.001	%	60 - 130%	85
	M8_0.7-0.8	SE157545.003	%	60 - 130%	82
	HA/GB1_0.15-0.25	SE157545.004	%	60 - 130%	79
	W1	SE157545.005	%	60 - 130%	88
	W2	SE157545.006	%	60 - 130%	85
	W3	SE157545.007	%	60 - 130%	91
C Pesticides in Water				Method: ME-(AU)-[E	NVJAN400/A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	W1	SE157545.008	%	40 - 130%	59
	W2	SE157545.009	%	40 - 130%	61
	W3	SE157545.010	%	40 - 130%	40
P Pesticides in Soll	**5	3E107040.010	70	Method: ME-(AU)-[E	
					-
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	M7_0.2-0.3	SE157545.001	%	60 - 130%	76
	M8_0.7-0.8	SE157545.003	%	60 - 130%	80
	HA/GB1_0.15-0.25	SE157545.004	%	60 - 130%	78
	W1	SE157545.005	%	60 - 130%	80
	W2	SE157545.006	%	60 - 130%	80
	W3	SE157545.007	%	60 - 130%	80
114-p-terphenyl (Surrogate)	M7_0.2-0.3	SE157545.001	%	60 - 130%	86
	M8_0.7-0.8	SE157545.003	%	60 - 130%	90
	HA/GB1_0.15-0.25	SE157545.004	%	60 - 130%	96
	W1	SE157545.005	%	60 - 130%	92
	W2	SE157545.006	%	60 - 130%	92
	W3	SE157545.007	%	60 - 130%	92
P Pesticides in Water				Method: ME-(AU)-[E	NVIAN400//
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	W1	SE157545.008	%	40 - 130%	52
	W2	SE157545.009	%	40 - 130%	68
	W3	SE157545.010	%	40 - 130%	40
114-p-terphenyl (Surrogate)	W1	SE157545.008	%	40 - 130%	82
	W2	SE157545.009	%	40 - 130%	62
	W2 W3	SE157545.010	%	40 - 130%	48
AH (Polynuclear Aromatic Hydrocarbons) in Soil	VV3	SE157545.010	/6	Method: ME	
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	M7_0.2-0.3	SE157545.001	%	70 - 130%	76
-nuorobiphenyi (Surrogate)			%	70 - 130%	80
	M8_0.7-0.8	SE157545.003			
	HA/GB1_0.15-0.25	SE157545.004	%	70 - 130%	78
	W1	SE157545.005	%	70 - 130%	80
	W2	SE157545.006	%	70 - 130%	80
	W3	SE157545.007	%	70 - 130%	80
114-p-terphenyl (Surrogate)	M7_0.2-0.3	SE157545.007 SE157545.001	%	70 - 130%	86
114-p-terphenyl (Surrogate)	M7_0.2-0.3 M8_0.7-0.8	SE157545.007 SE157545.001 SE157545.003	%	70 - 130% 70 - 130%	86 90
114-p-terphenyl (Surrogate)	M7_0.2-0.3	SE157545.007 SE157545.001	%	70 - 130%	86
14-p-terphenyl (Surrogate)	M7_0.2-0.3 M8_0.7-0.8	SE157545.007 SE157545.001 SE157545.003	%	70 - 130% 70 - 130%	86 90
14-p-terphenyl (Surrogate)	M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25	SE157545.007 SE157545.001 SE157545.003 SE157545.004	% %	70 - 130% 70 - 130% 70 - 130%	86 90 96
14-p-terphenyl (Surrogate)	M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1	SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005	% % %	70 - 130% 70 - 130% 70 - 130% 70 - 130%	86 90 96 92
	M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2	SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.006	% % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	86 90 96 92 92
	M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2 W3	SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.006 SE157545.007	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	86 90 96 92 92 92
	M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2 W3 M7_0.2-0.3	SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.006 SE157545.007 SE157545.001	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	86 90 96 92 92 92 92 76
	M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2 W3 M7_0.2-0.3 M8_0.7-0.8	SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.006 SE157545.007 SE157545.001 SE157545.003	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	86 90 96 92 92 92 92 76 78
	M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2 W3 M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25	SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.006 SE157545.007 SE157545.001 SE157545.003 SE157545.003 SE157545.004	% % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	86 90 92 92 92 76 78 78
114-p-terphenyl (Surrogate) 15-nitrobenzene (Surrogate)	M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2 W3 M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1	SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.006 SE157545.007 SE157545.001 SE157545.003 SE157545.003 SE157545.004 SE157545.004 SE157545.004 SE157545.003 SE157545.004 SE157545.005	% % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	86 90 92 92 92 76 78 76 78
15-nitrobenzene (Surrogate)	M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2 W3 M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2	SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.006 SE157545.007 SE157545.001 SE157545.003 SE157545.003 SE157545.004 SE157545.005 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.005 SE157545.006	% % % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	86 90 92 92 92 76 78 76 78 76 78 76 78
5-nitrobenzene (Surrogate) H (Polynuclear Aromatic Hydrocarbons) in Water	M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2 W3 M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2 W3 W3	SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.006 SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.004 SE157545.004 SE157545.004 SE157545.005 SE157545.006 SE157545.006 SE157545.006 SE157545.007	% % % % % % % %	70 - 130% Method: ME	86 90 92 92 76 78 76 78 78 76 78 76 78 76
5-nitrobenzene (Surrogate) H (Polynuclear Aromatic Hydrocarbons) in Water arameter	M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2 W3 M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2 W3 Sample Name	SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.006 SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.004 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.006 SE157545.006 SE157545.007 SE157545.007 SE157545.007 SE157545.007 SE157545.007	% % % % % % % % % %	70 - 130% Criteria	86 90 92 92 92 76 78 76 78 76 78 76 78 (AU)-[ENV] Recover
	M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2 W3 M7_0.2-0.3 M8_0.7-0.8 HA/GB1_0.15-0.25 W1 W2 W3 W3	SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.006 SE157545.007 SE157545.001 SE157545.003 SE157545.004 SE157545.005 SE157545.004 SE157545.004 SE157545.004 SE157545.005 SE157545.006 SE157545.006 SE157545.006 SE157545.007	% % % % % % % %	70 - 130% Method: ME	86 90 92 92 92 76 78 76 78 76 78 76 78

SURROGATES

Method: ME-(AU)-[ENV]AN420

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water (continued)

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d14-p-terphenyl (Surrogate)	W1	SE157545.008	%	40 - 130%	82
	W2	SE157545.009	%	40 - 130%	62
	W3	SE157545.010	%	40 - 130%	48
d5-nitrobenzene (Surrogate)	W1	SE157545.008	%	40 - 130%	52
	W2	SE157545.009	%	40 - 130%	64
	W3	SE157545.010	%	40 - 130%	46

VOC's in Soil				Method: ME-(AU)-[ENV]AN433		
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %	
Bromofluorobenzene (Surrogate)	M7_0.2-0.3	SE157545.001	%	60 - 130%	108	
	M8_0.7-0.8	SE157545.003	%	60 - 130%	107	
	HA/GB1_0.15-0.25	SE157545.004	%	60 - 130%	106	
	W1	SE157545.005	%	60 - 130%	109	
	W2	SE157545.006	%	60 - 130%	116	
	W3	SE157545.007	%	60 - 130%	109	
	QC18 (Trip Blank)	SE157545.011	%	60 - 130%	108	
	QC19 (Trip Spike)	SE157545.012	%	60 - 130%	108	
d4-1,2-dichloroethane (Surrogate)	M7_0.2-0.3	SE157545.001	%	60 - 130%	82	
	M8_0.7-0.8	SE157545.003	%	60 - 130%	93	
	HA/GB1_0.15-0.25	SE157545.004	%	60 - 130%	106	
	W1	SE157545.005	%	60 - 130%	99	
	W2	SE157545.006	%	60 - 130%	102	
	W3	SE157545.007	%	60 - 130%	102	
	QC18 (Trip Blank)	SE157545.011	%	60 - 130%	117	
	QC19 (Trip Spike)	SE157545.012	%	60 - 130%	121	
d8-toluene (Surrogate)	M7_0.2-0.3	SE157545.001	%	60 - 130%	105	
	M8_0.7-0.8	SE157545.003	%	60 - 130%	78	
	HA/GB1_0.15-0.25	SE157545.004	%	60 - 130%	89	
	W1	SE157545.005	%	60 - 130%	76	
	W2	SE157545.006	%	60 - 130%	84	
	W3	SE157545.007	%	60 - 130%	77	
	QC18 (Trip Blank)	SE157545.011	%	60 - 130%	89	
	QC19 (Trip Spike)	SE157545.012	%	60 - 130%	72	
Dibromofluoromethane (Surrogate)	M7_0.2-0.3	SE157545.001	%	60 - 130%	79	
	M8_0.7-0.8	SE157545.003	%	60 - 130%	108	
	HA/GB1_0.15-0.25	SE157545.004	%	60 - 130%	79	
	W1	SE157545.005	%	60 - 130%	72	
	W2	SE157545.006	%	60 - 130%	74	
	W3	SE157545.007	%	60 - 130%	76	
	QC18 (Trip Blank)	SE157545.011	%	60 - 130%	91	
	QC19 (Trip Spike)	SE157545.012	%	60 - 130%	92	

VOCs in Water				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	W1	SE157545.008	%	40 - 130%	93
	W2	SE157545.009	%	40 - 130%	93
	W3	SE157545.010	%	40 - 130%	91
d4-1,2-dichloroethane (Surrogate)	W1	SE157545.008	%	40 - 130%	97
	W2	SE157545.009	%	40 - 130%	96
	W3	SE157545.010	%	40 - 130%	98
d8-toluene (Surrogate)	W1	SE157545.008	%	40 - 130%	93
	W2	SE157545.009	%	40 - 130%	95
	W3	SE157545.010	%	40 - 130%	93
Dibromofluoromethane (Surrogate)	W1	SE157545.008	%	40 - 130%	103
	W2	SE157545.009	%	40 - 130%	103
	W3	SE157545.010	%	40 - 130%	105
Volatile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	M7_0.2-0.3	SE157545.001	%	60 - 130%	108

SE157545.003

SE157545.004

%

60 - 130%

60 - 130%

M8_0.7-0.8

HA/GB1_0.15-0.25

107

106

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Recovery % Parameter Sample Number Units Criteria Sample Name Bromofluorobenzene (Surrogate) W1 SE157545.005 % 60 - 130% 109 W2 SE157545.006 % 60 - 130% 116 W3 SE157545.007 % 60 - 130% 109 QC18 (Trip Blank) SE157545.011 % 60 - 130% 108 d4-1,2-dichloroethane (Surrogate) M7_0.2-0.3 SE157545.001 % 60 - 130% 82 M8 0.7-0.8 SE157545.003 60 - 130% 93 % HA/GB1_0.15-0.25 SE157545.004 % 60 - 130% 106 SE157545.005 60 - 130% 99 W1 % W2 102 SE157545.006 % 60 - 130% W3 SE157545.007 % 60 - 130% 102 QC18 (Trip Blank) 60 - 130% SE157545.011 % 117 d8-toluene (Surrogate) M7 0.2-0.3 SE157545.001 60 - 130% 105 % M8 0.7-0.8 SE157545.003 % 60 - 130% 78 HA/GB1_0.15-0.25 SE157545.004 % 60 - 130% 89 W1 SE157545.005 % 60 - 130% 76 W2 SE157545.006 % 60 - 130% 84 77 W3 SE157545.007 % 60 - 130% QC18 (Trip Blank) SE157545.011 % 60 - 130% 89 Dibromofluoromethane (Surrogate) M7_0.2-0.3 SE157545.001 % 60 - 130% 79 M8_0.7-0.8 SE157545.003 60 - 130% 108 % HA/GB1_0.15-0.25 SE157545.004 % 60 - 130% 79 W1 SE157545.005 % 60 - 130% 72 W2 SE157545.006 % 60 - 130% 74 76 W3 SE157545.007 % 60 - 130% QC18 (Trip Blank) SE157545.011 % 60 - 130% 91 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Parameter Sample Nam Sample Num Units Criteria Recovery % Bromofluorobenzene (Surrogate) W1 SE157545.008 % 40 - 130% 93 w/2 SE157545.009 % 40 - 130% 93 W3 SE157545.010 % 40 - 130% 91 d4-1,2-dichloroethane (Surrogate) W1 SE157545.008 60 - 130% 97 % W2 SE157545.009 % 60 - 130% 96 W3 SE157545.010 % 60 - 130% 98 d8-toluene (Surrogate) W1 SE157545.008 % 40 - 130% 93 W2 SE157545.009 % 40 - 130% 95 W3 SE157545.010 40 - 130% 93 % Dibromofluoromethane (Surrogate) W1 SE157545.008 40 - 130% 103 % W2 SE157545.009 % 40 - 130% 103

SE157545.010

%

40 - 130%

105

W3

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB110970.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			M	ethod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB110977.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soll				Method: ME-((AU)-[ENV]AN400/AN420
Sample Number		Parameter	Units	LOR	Result
LB110824.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
_		Mirex	mg/kg	0.1	<0.1
S	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	85

OC Pesticides in Water			Method: ME-	(AU)-[ENV]AN400/AN420
Sample Number	Parameter	Units	LOR	Result
LB110738.001	Hexachlorobenzene (HCB)	μg/L	0.1	<0.1
	Alpha BHC	μg/L	0.1	<0.1
	Lindane (gamma BHC)	μg/L	0.1	<0.1
	Heptachlor	μg/L	0.1	<0.1
	Aldrin	μg/L	0.1	<0.1
	Beta BHC	µg/L	0.1	<0.1
	Delta BHC	µg/L	0.1	<0.1
	Heptachlor epoxide	µg/L	0.1	<0.1
	Alpha Endosulfan	µg/L	0.1	<0.1
	Gamma Chlordane	µg/L	0.1	<0.1
	Alpha Chlordane	µg/L	0.1	<0.1
	p,p'-DDE	µg/L	0.1	<0.1
	Dieldrin	µg/L	0.1	<0.1
	Endrin	µg/L	0.1	<0.1
	Beta Endosulfan	µg/L	0.1	<0.1
	p,p'-DDD	µg/L	0.1	<0.1
	p,p'-DDT	µg/L	0.1	<0.1
	Endosulfan sulphate	µg/L	0.1	<0.1
	Endrin aldehyde	µg/L	0.1	<0.1
	Methoxychlor	μg/L	0.1	<0.1
	Endrin ketone	µg/L	0.1	<0.1
	Isodrin	µg/L	0.1	<0.1
	Mirex	µg/L	0.1	<0.1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Acenaphthylene

OC Pesticides in Water					(AU)-[ENV]AN400/AN
Sample Number		Parameter	Units	LOR	Result
LB110738.001	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	78
OP Pesticides in Soil				Method: ME-	(AU)- <mark>[ENV]AN4</mark> 00/AN
Sample Number		Parameter	Units	LOR	Result
_B110824.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	80
		d14-p-terphenyl (Surrogate)	%	-	94
OP Pesticides in Water	r			Method: ME-	(AU)-[ENV]AN400/AN
Sample Number		Parameter	Units	LOR	Result
LB110738.001				0.5	<0.5
LD 10/30.001		Dichlorvos	μg/L		<0.5
		Dimethoate	μg/L	0.5	<0.5
		Diazinon (Dimpylate)	μg/L		
		Fenitrothion	μg/L	0.2	<0.2
		Malathion	μg/L	0.2	
		Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	<0.2
		Parathion-ethyl (Parathion)	μg/L	0.2	<0.2
		Bromophos Ethyl	μg/L	0.2	<0.2
		Methidathion	μg/L	0.5	<0.5
		Ethion	μg/L	0.2	<0.2
		Azinphos-methyl	μg/L	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	<u>%</u>		72
		d14-p-terphenyl (Surrogate)	%		
	matic Hydrocarbons) in Soil				od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB110824.001		Naphthalene	mg/kg	0.1	<0.1
		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	84
		2-fluorobiphenyl (Surrogate)	%	-	80
		d14-p-terphenyl (Surrogate)	%	-	94
AH (Polynuclear Aron	matic Hydrocarbons) in Wat	ler		Metho	Dd: ME-(AU)-[ENV]AN
	natic Hydrocarbons) in Wat	ter Parameter	Units	LOR	d: ME-(AU)-[ENV]AN Result
Sample Number	natic Hydrocarbons) in Wat	Parameter		LOR	
Sample Number	natic Hydrocarbons) in Wat	Parameter Naphthalene	μg/L	LOR 0.1	Result <0.1
<mark>PAH (Polynuclear Aron</mark> Sample Number LB110738.001	natic Hydrocarbons) in Wat	Parameter		LOR	Result

<0.1

µg/L

0.1

SE157545 R0

Method: ME-(AU)-[ENV]AN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Water (continued)

Sample Number		Parameter	Units	LOR	Result
LB110738.001		Acenaphthene	μg/L	0.1	<0.1
		Fluorene	μg/L	0.1	<0.1
		Phenanthrene	μg/L	0.1	<0.1
		Anthracene	μg/L	0.1	<0.1
		Fluoranthene	μg/L	0.1	<0.1
		Pyrene	μg/L	0.1	<0.1
		Benzo(a)anthracene	µg/L	0.1	<0.1
		Chrysene	μg/L	0.1	<0.1
		Benzo(a)pyrene	µg/L	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1
		Dibenzo(ah)anthracene	µg/L	0.1	<0.1
		Benzo(ghi)perylene	µg/L	0.1	<0.1
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	76
		2-fluorobiphenyl (Surrogate)	%	-	72
		d14-p-terphenyl (Surrogate)	%	-	110
Total Phenolics in Soil				Ме	thod: ME-(AU)-[ENV]AN289
Sample Number		Parameter	Units	LOR	Result
LB110743.001		Total Phenols	mg/kg	0.1	<0.1

Total Phenolics in Water

Total Phenolics in Water	Metho			
Sample Number	Parameter	Units	LOR	Result
LB110849.001	Total Phenols	mg/L	0.01	<0.01

Total Recoverable Metals in Soil/Waste	Solids/Materials by ICPOES		Method: ME-	(AU)-[ENV]AN040/AN320
Sample Number	Parameter	Units	LOR	Result
LB111001.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
Trace Metals (Dissolved) in Water by IC	PMS		Meth	od: ME-(AU)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result
LB110745.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1

	Zinc, Zn	µg/L	5	<5
TRH (Total Recoverable Hydrocarbons) in Soil		Meth	od: ME-(AU)-[ENV]AN403
Sample Number	Parameter	Units	LOR	Result
LB110824.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100
	TRH C10-C36 Total	mg/kg	110	<110
TRH (Total Recoverable Hydrocarbons) in Water		Meth	od: ME-(AU)-[ENV]AN403
Sample Number	Parameter	Units	LOR	Result
LB110738.001	TRH C10-C14	μg/L	50	<50
	TRH C15-C28	µg/L	200	<200

TRH C29-C36

TRH C37-C40

<200

<200

200

200

µg/L

µg/L

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil

VOC's in Soil				Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB110735.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	97
		d4-1,2-dichloroethane (Surrogate)	%	-	129
		d8-toluene (Surrogate)	%	-	74
		Bromofluorobenzene (Surrogate)	%	-	114
	Totals	Total BTEX	mg/kg	0.6	<0.6
OCs in Water				Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB110850.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	µg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	99
		d4-1,2-dichloroethane (Surrogate)	%	-	91
		d8-toluene (Surrogate)	%	-	99
		Bromofluorobenzene (Surrogate)	%	-	93
/olatile Petroleum Hyd	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
B110735.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	97
		d4-1,2-dichloroethane (Surrogate)	%	-	129
		d8-toluene (Surrogate)	%	-	74
olatile Petroleum Hyd	drocarbons in Water			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B110850.001		TRH C6-C9	µg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	99
		d4-1,2-dichloroethane (Surrogate)	%	-	91
		d8-toluene (Surrogate)	%	-	99
		Bromofluorobenzene (Surrogate)	%	-	93

Method: ME-(AU)-[ENV]AN002

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)) in Water				Metho	d: ME-(AU)-[ENVJAN311(P	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE157544.005	LB110970.014	Mercury	μg/L	0.0001	<0.0001	0.0000	200	24

Mercury in Soil

Mercury in Soil Method: ME-(AU)-[EN				ENVJAN312				
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE157535.001	LB110977.014	Mercury	mg/kg	0.05	<0.01	<0.01	200	0
SE157545.007	LB110977.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE157527.002	LB110857.011	% Moisture	%w/w	0.5	5.9	5.6	47	5
SE157533.002	LB110857.022	% Moisture	%w/w	0.5	43.7	41.7	32	5
SE157545.001	LB110857.033	% Moisture	%w/w	0.5	20	21	35	3
SE157545.011	LB110857.040	% Moisture	%w/w	0.5	<0.5	<0.5	200	0

PAH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	od: ME-(AU)-	ENVJAN420
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE157527.008	LB110824.024		Naphthalene	mg/kg	0.1	<0.1	0.01	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0.02	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	0.2	0.12	99	34
			Anthracene	mg/kg	0.1	<0.1	0.02	200	0
			Fluoranthene	mg/kg	0.1	0.5	0.34	54	36
			Pyrene	mg/kg	0.1	0.5	0.42	52	15
			Benzo(a)anthracene	mg/kg	0.1	0.3	0.2	69	43
			Chrysene	mg/kg	0.1	0.2	0.15	81	46
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.3	0.18	75	36
			Benzo(k)fluoranthene	mg/kg	0.1	0.1	0.07	125	33
			Benzo(a)pyrene	mg/kg	0.1	0.2	0.13	87	51
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.1	0.07	141	10
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.01	200	0
			Benzo(ghi)perylene	mg/kg	0.1	0.1	0.06	155	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td>0.1765</td><td>93</td><td>42</td></lor=0<>	TEQ (mg/kg)	0.2	0.3	0.1765	93	42
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.4</td><td>0.2875</td><td>96</td><td>30</td></lor=lor<>	TEQ (mg/kg)	0.3	0.4	0.2875	96	30
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.4</td><td>0.232</td><td>78</td><td>42</td></lor=lor>	TEQ (mg/kg)	0.2	0.4	0.232	78	42
			Total PAH (18)	mg/kg	0.8	2.5	1.61	69	45
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.41	30	5
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.43	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.4	30	16
Total Phenolics in	Soil						Meth	od: ME-(AU)-	ENVJAN28
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE157545.001	LB110743.004		Total Phenols	mg/kg	0.1	2.3	2.3	19	0

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

		•						
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE157605.009	LB111001.024	Arsenic, As	mg/kg	3	3.4407125805	4.5183056029	55	27
		Cadmium, Cd	mg/kg	0.3	0.3955906023	0.4120273720	104	4
		Chromium, Cr	mg/kg	0.3	26.284316075	24.831465617	E 32	6
		Copper, Cu	mg/kg	0.5	27.283889000	24.719703352	9 32	10
		Lead, Pb	mg/kg	1	18.707944198	20.038330323	5 35	7
		Nickel, Ni	mg/kg	0.5	28.220406929	26.748952411	7 32	5
		Zinc, Zn	mg/kg	0.5	00.190743352	08.957737647	32	8
Trace Metals (Dis	solved) in Water by ICPMS					Meth	od: ME-(AU)-	ENVJAN3

Original	Duplicate	Parameter	Units	LOR

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

race Metals (Diss	olved) in Water by IC	PMS (continued)					Meth	nod: ME-(AU)-	(ENVJAN:
Original	Duplicate	(,	Parameter	Units	LOR	Original		Criteria %	RPD %
SE157499.003	LB110745.014		Arsenic, As	μg/L	1	<1	<1	200	0
			Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	μg/L	1	<1	<1	200	0
			Copper, Cu	μg/L	1	<1	<1	200	0
			Lead, Pb	μg/L	1	<1	<1	200	0
			Nickel, Ni	μg/L	1	<1	<1	200	0
			Zinc, Zn	μg/L	5	<5	<5	200	0
SE157566.002	LB110745.028		Arsenic, As	μg/L	1	2	2	70	1
			Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	μg/L	1	<1	<1	200	0
			Copper, Cu	µg/L	1	2	2	79	6
			Lead, Pb	μg/L	1	<1	<1	200	0
			Nickel, Ni	μg/L	1	36	36	18	0
			Zinc, Zn	μg/L	5	35	34	29	2
SE157580.032	LB110745.031		Arsenic, As	μg/L	1	<1	<1	200	0
			Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	μg/L	1	<1	<1	200	0
			Copper, Cu	μg/L	1	<1	<1	166	0
			Lead, Pb	μg/L	1	<1	<1	200	0
			Nickel, Ni	μg/L	1	<1	<1	200	0
			Zinc, Zn	μg/L	5	<5	<5	152	0
DH (Total Deserv	and la Usulan and and	un Coll	Eno, En	P9, 2					
	erable Hydrocarbons	in Soli	Developmenter	l Inite	LOR	Original		nod: ME-(AU)-	
Original	Duplicate		Parameter	Units		Original	-	Criteria %	RPD
SE157527.008	LB110824.024		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE157545.011	LB110824.022		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
OC's in Soil							Mett	nod: ME-(AU)-	(ENVJAN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
E157559.002	LB110735.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.4	4.2	50	4
		=	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.8	5.6	50	4
			d8-toluene (Surrogate)	mg/kg	-	4.4	3.9	50	12
			Bromofluorobenzene (Surrogate)	mg/kg	_	5.5	5.4	50	3
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
		10(013	Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE157567.004	LB110735.020	Monocyclic	Benzene	mg/kg	0.0	<0.0	<0.0	200	0
02101001.004	20110/00.020	Aromatic				<0.1			0
			Toluene	mg/kg	0.1		<0.1	200	

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	itinued)							hod: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE157567.004	LB110735.020	Monocyclic	m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
		Aromatic	o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.2	3.9	50	6
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	3.7	50	14
			d8-toluene (Surrogate)	mg/kg	-	4.5	3.9	50	13
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.3	4.6	50	7
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
OCs in Water							Mett	hod: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE157560.001	LB110850.018	Monocyclic	Benzene	µg/L	0.5	1.0	2.0	63	64 ③
		Aromatic	Toluene	μg/L	0.5	<0.5	<0.5	200	0
			Ethylbenzene	µg/L	0.5	<0.5	<0.5	200	0
			m/p-xylene	µg/L	1	<1	<1	200	0
			o-xylene	μg/L	0.5	<0.5	<0.5	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	<0.5	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.1	4.8	30	6
		Gunogates	d4-1,2-dichloroethane (Surrogate)	μg/L	_	4.7	4.8	30	3
			d8-toluene (Surrogate)	μg/L	_	4.5	5.2	30	13
			Bromofluorobenzene (Surrogate)	μg/L		4.8	5.0	30	5
		•	biomoliuorobenzene (Surrogale)	pg/c		4.0			
	Hydrocarbons in Soi	1		11.14	100	<u> </u>		hod: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		RPD
SE157559.002	LB110735.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.4	4.2	30	4
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.8	5.6	30	4
			d8-toluene (Surrogate)						
				mg/kg	-	4.4	3.9	30	12
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.5	5.4	30	12 3
		VPH F Bands			- 0.1				
		VPH F Bands	Bromofluorobenzene (Surrogate)	mg/kg		5.5	5.4	30	3
SE157567.004	LB110735.020	VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0)	mg/kg mg/kg	0.1	5.5 <0.1	5.4 <0.1	30 200	3 0
SE157567.004	LB110735.020	VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg mg/kg	0.1 25	5.5 <0.1 <25	5.4 <0.1 <25	30 200 200	3 0 0
SE157567.004	LB110735.020	VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10	mg/kg mg/kg mg/kg mg/kg	0.1 25 25	5.5 <0.1 <25 120	5.4 <0.1 <25 89	30 200 200 54	3 0 0 31
SE157567.004	LB110735.020		Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 25 25 20	5.5 <0.1 <25 120 72	5.4 <0.1 <25 89 54	30 200 200 54 62	3 0 0 31 30
SE157567.004	LB110735.020		Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 25 25 20 -	5.5 <0.1 <25 120 72 4.2	5.4 <0.1 <25 89 54 3.9	30 200 200 54 62 30	3 0 0 31 30 6
SE157567.004	LB110735.020		Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 25 25 20 -	5.5 <0.1 <25 120 72 4.2 4.2 4.2	5.4 <0.1 <25 89 54 3.9 3.7	30 200 200 54 62 30 30	3 0 31 30 6 14
SE157567.004	LB110735.020		Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 25 25 20 - - -	5.5 <0.1 <25 120 72 4.2 4.2 4.2 4.5	5.4 <0.1 <25 89 54 3.9 3.7 3.9	30 200 200 54 62 30 30 30 30	3 0 31 30 6 14 13
SE157567.004	LB110735.020	Surrogates	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 25 25 20 - - - -	5.5 <0.1 <25 120 72 4.2 4.2 4.2 4.5 4.3	5.4 <0.1 <25 89 54 3.9 3.7 3.9 4.6	30 200 200 54 62 30 30 30 30 30	3 0 31 30 6 14 13 7
	LB110735.020	Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 25 25 20 - - - 0.1	5.5 <0.1 <25 120 72 4.2 4.2 4.5 4.3 <0.1	5.4 <0.1 <25 89 54 3.9 3.7 3.9 4.6 <0.1 89	30 200 54 62 30 30 30 30 30 200	3 0 31 30 6 14 13 7 0 31
/olatile Petroleum		Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 25 25 20 - - - 0.1	5.5 <0.1 <25 120 72 4.2 4.2 4.5 4.3 <0.1	5.4 <0.1 <25 89 54 3.9 3.7 3.9 4.6 <0.1 89 Meth	30 200 54 62 30 30 30 30 200 54	3 0 31 30 6 14 13 7 0 31
/olatile Petroleum Original	I Hydrocarbons in Wa	Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 25 25 20 - - - 0.1 25	5.5 <0.1 <25 120 72 4.2 4.2 4.5 4.3 <0.1 120	5.4 <0.1 <25 89 54 3.9 3.7 3.9 4.6 <0.1 89 Meth	30 200 54 62 30 30 30 30 200 54 hod: ME-(AU)-	3 0 31 30 6 14 13 7 0 31
	I <mark>Hydrocarbons in Wa</mark> Duplicate	Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 25 25 20 - - - 0.1 25 LOR	5.5 <0.1 <25 120 72 4.2 4.2 4.5 4.3 <0.1 120 Original	5.4 <0.1 <25 89 54 3.9 3.7 3.9 3.7 3.9 4.6 <0.1 89 Meth Duplicate	30 200 54 62 30 30 30 30 200 54 hod: ME-(AU)- Criteria %	3 0 31 30 6 14 13 7 0 31 [ENV]AN RPD
∕olatile Petroleurr Original	I <mark>Hydrocarbons in Wa</mark> Duplicate	Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	mg/kg	0.1 25 25 20 - - - 0.1 25 UOR 50	5.5 <0.1 <25 120 72 4.2 4.2 4.5 4.3 <0.1 120 Original 66	5.4 <0.1 <25 89 54 3.9 3.7 3.9 4.6 <0.1 89 Meth Duplicate 80	30 200 54 62 30 30 30 30 200 54 hod: ME-(AU)- Criteria % 99	3 0 31 30 6 14 13 7 0 31 [ENV]AN RPD 19
∕olatile Petroleurr Original	I <mark>Hydrocarbons in Wa</mark> Duplicate	Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg	0.1 25 25 20 - - - 0.1 25 LOR 50 40	5.5 <0.1 <25 120 72 4.2 4.2 4.5 4.3 <0.1 120 Original 66 66 5.1	5.4 <0.1 <25 89 54 3.9 3.7 3.9 4.6 <0.1 89 Meth Duplicate 80 80 80 4.8	30 200 54 62 30 30 30 30 30 200 54 http://www.second.com/ 54 criteria % 99 85 30	3 0 31 30 6 14 13 7 0 31 ENVIA RPD 19 19
/olatile Petroleum Original	I <mark>Hydrocarbons in Wa</mark> Duplicate	Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/L µg/L µg/L	0.1 25 25 20 - - - 0.1 25 LOR 50 40 -	5.5 <0.1 <25 120 72 4.2 4.2 4.2 4.3 <0.1 120 Original 66 66 66 5.1 4.7	5.4 <0.1 <25 89 54 3.9 3.7 3.9 4.6 <0.1 89 Met Duplicate 80 80 80 4.8	30 200 54 62 30 30 30 30 200 54 hod: ME-(AU)- Criteria % 99 85 30 30	3 0 31 30 6 14 13 7 7 0 31 ENVIAI ENVIAI PD 19 19 6 3
/olatile Petroleum Original	I <mark>Hydrocarbons in Wa</mark> Duplicate	Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L µg/L µg/L	0.1 25 25 20 - - - 0.1 25 LOR 50 40 -	5.5 <0.1 <25 120 72 4.2 4.2 4.2 4.3 <0.1 120 Original 66 66 5.1 4.7 4.5	5.4 <0.1 <25 89 54 3.9 3.7 3.9 4.6 <0.1 89 Meth Duplicate 80 80 4.8 4.8 5.2	30 200 54 62 30 30 30 30 30 30 200 54 http://www.selice.com/ 54 thtp://www.selice.com/ 54 thtp://www.selice.com/ 89 85 30 30 30 30 30 30 30 30 30 30 30 30 30	3 0 31 30 6 14 13 7 0 31 ENVIA RPD 19 19 6 3 13
/olatile Petroleum Original	I <mark>Hydrocarbons in Wa</mark> Duplicate	Surrogates VPH F Bands	Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/L µg/L µg/L	0.1 25 25 20 - - - 0.1 25 LOR 50 40 -	5.5 <0.1 <25 120 72 4.2 4.2 4.2 4.3 <0.1 120 Original 66 66 66 5.1 4.7	5.4 <0.1 <25 89 54 3.9 3.7 3.9 4.6 <0.1 89 Met Duplicate 80 80 80 4.8	30 200 54 62 30 30 30 30 200 54 hod: ME-(AU)- Criteria % 99 85 30 30	3 0 31 30 6 14 13 7 7 0 31 ENVIAI ENVIAI PD 19 19 6 3

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil Method: ME-(AU)-[ENV Sample Number Parameter Units LOR Result Expected Criteria % Recov								
Sample Number Parameter Units LOR Result Expected Criteria % Reco	Mercury in Soil					N	lethod: ME-(A	U)-[ENV]AN312
	Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB110977.002 Mercury mg/kg 0.05 0.20 0.2 70 - 130 10	LB110977.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	102

OC Pesticides in S	Soil					Method:	ME-(AU)-[ENV	/JAN400/AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB110824.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	112
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	104
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	108
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	92
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	115
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	125
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.15	40 - 130	83
OC Pesticides in V	Vater					Method:	ME-(AU)-[ENV	/JAN400/AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB110738.002		Heptachlor	µg/L	0.1	0.3	0.2	60 - 140	125
		Aldrin	µg/L	0.1	0.2	0.2	60 - 140	118
		Delta BHC	μg/L	0.1	0.2	0.2	60 - 140	117
		Dieldrin	μg/L	0.1	0.2	0.2	60 - 140	119
		Endrin	µg/L	0.1	0.3	0.2	60 - 140	125
		p,p'-DDT	µg/L	0.1	0.2	0.2	60 - 140	117
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	µg/L	-	0.14	0.15	40 - 130	96
OP Pesticides in S	ioil					Method:	ME-(AU)-[ENV	/JAN400/AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB110824.002		Dichlorvos	mg/kg	0.5	1.7	2	60 - 140	85
		Diazinon (Dimpylate)	mg/kg	0.5	1.7	2	60 - 140	83
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	87
		Ethion	mg/kg	0.2	1.5	2	60 - 140	76
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	74
	Ū.	d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	82
OP Pesticides in V	Vater					Method:	ME-(AU)-[ENV	/IAN400/AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB110738.002		Dichlorvos	µg/L	0.5	8.6	8	60 - 140	107
		Diazinon (Dimpylate)	μg/L	0.5	8.6	8	60 - 140	107
		Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	8.7	8	60 - 140	109
		Ethion	μg/L	0.2	8.2	8	60 - 140	103
	Surrogates	2-fluorobiphenyl (Surrogate)	μg/L	-	0.4	0.5	40 - 130	76
		d14-p-terphenyl (Surrogate)	μg/L	-	0.4	0.5	40 - 130	72
PAH (Polynuclear	Aromatic Hydroc					N	vethod: ME-(Al	
Sample Number		Parameter	Units	LOR	Result	Expected		Recovery
LB110824.002					3.6	4		90
LB110624.002		Naphthalene Acenaphthylene	mg/kg	0.1	3.5	4 4	60 - 140 60 - 140	88
		Acenaphthene	mg/kg	0.1	3.5	4	60 - 140	88
		Phenanthrene	mg/kg	0.1	3.6	4	60 - 140	89
		Anthracene	mg/kg mg/kg	0.1	3.6	4	60 - 140	89
		Fluoranthene	mg/kg	0.1	3.6	4 4	60 - 140	90
		Pyrene	mg/kg	0.1	3.5	4	60 - 140	87
		Benzo(a)pyrene		0.1	3.8	4	60 - 140	95
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg mg/kg		0.4	4 0.5	40 - 130	74
	Gunogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	74
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	82
AH (Polynuclear	Aromatic Lhudroov						viethod: ME-(Al	
		Parameter	Units	LOR-	Popult			
Sample Number LB110738.002				LOR 0.1	Result 32	Expected 40	Criteria % 60 - 140	Recover
LD110730.002		Naphthalene	µg/L				60 - 140	
		Acenaphthylene	µg/L	0.1	36	40		89
		Acenaphthene	µg/L	0.1	35	40	60 - 140	88
		Phenanthrene	µg/L	0.1	36	40	60 - 140	89
		Anthracene	µg/L	0.1	33	40	60 - 140	81

Fluoranthene

0.1

µg/L

36

40

60 - 140

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Water (continued)

PAH (Polynuclear A	romatic Hydrocai	bons) in Water (continued)				N	lethod: ME-(A	U)-[ENV]AN420
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB110738.002		Pyrene	µg/L	0.1	34	40	60 - 140	86
		Benzo(a)pyrene	µg/L	0.1	33	40	60 - 140	82
	Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.4	0.5	40 - 130	70
		2-fluorobiphenyl (Surrogate)	µg/L	-	0.4	0.5	40 - 130	76
		d14-p-terphenyl (Surrogate)	µg/L	-	0.4	0.5	40 - 130	72
Total Phenolics in S	oil					N	/lethod: ME-(A	U)-[ENV]AN289
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB110743.002		Total Phenols	mg/kg	0.1	2.2	2.5	70 - 130	87

Total Phenolics in Water

Total Phenolics in Water						Method: ME-(A	U)-[ENV]AN289
Sample Number	Parameter	Unit	ts LOI	R Result	Expected	Criteria %	Recovery %
LB110849.002	Total Phenols	mg/L	0.01	0.22	0.25	80 - 120	88

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Expected Criteria % Recovery % Sample Number Parameter Units LOR Result LB111001.002 Arsenic, As 49 50 80 - 120 99 mg/kg 3 Cadmium, Cd mg/kg 0.3 51 50 80 - 120 102 Chromium, Cr mg/kg 0.3 50 50 80 - 120 99 51 80 - 120 Copper, Cu 0.5 50 101 mg/kg Lead, Pb mg/kg 1 50 50 80 - 120 101 0.5 50 50 80 - 120 100 Nickel, N mg/kg Zinc, Zn 0.5 51 50 80 - 120 101 mg/kg Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number Units LOR Result Expected Criteria % Recovery % Parameter LB110745.002 Arsenic, As µg/L 20 20 80 - 120 101 1 Cadmium, Cd 0.1 22 20 80 - 120 110 µg/L Chromium, Cr µg/L 1 23 20 80 - 120 113 80 - 120 Copper, Cu 23 20 114 µg/L 1 113 Lead. Pb µg/L 23 20 80 - 120 1 Nickel, Ni µg/L 21 20 80 - 120 105 1 Zinc, Zn 20 20 80 - 120 100 µg/L 5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Recovery % Sample Number Units LOR Result Criteria % Parameter Expected LB110824.002 TRH C10-C14 20 38 40 60 - 140 95 mg/kg TRH C15-C28 45 <45 40 60 - 140 100 mg/kg TRH C29-C36 mg/kg 45 <45 40 60 - 140 103 TRH F Bands TRH >C10-C16 (F2) 25 39 40 60 - 140 98 mg/kg TRH >C16-C34 (F3) 90 <90 40 60 - 140 108 mg/kg TRH >C34-C40 (F4) mg/kg 120 <120 20 60 - 140 100 TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENVIAN403 Sample Number Units Result Expected Criteria % Recovery % Parameter LB110738.002 TRH C10-C14 50 920 1200 60 - 140 77 µg/L TRH C15-C28 µg/L 200 1200 1200 60 - 140 103 TRH C29-C36 200 1400 1200 60 - 140 119 µg/L TRH F Bands TRH >C10-C16 (F2) 1100 1200 60 - 140 60 88 µg/L TRH >C16-C34 (F3) µg/L 500 1400 1200 60 - 140 115 TRH >C34-C40 (F4) 740 600 123 µg/L 500 60 - 140 Method: ME-(AU)-[ENV]AN433 VOC's in Soil Sample Number Parameter Units Result Expected Criteria % Recovery % LB110735.002 Monocyclic Benzene 0.1 2.5 2.9 60 - 140 86 mg/kg Aromatic Toluene 0.1 2.1 2.9 60 - 140 72 mg/kg Ethylbenzene mg/kg 0.1 2.2 2.9 60 - 140 76 mg/kg 0.2 5.8 5.8 60 - 140 101 m/p-xylene

0.1

mg/kg

mg/kg

2.6

4.7

2.9

5

60 - 140

60 - 140

o-xylene

Surrogates

Dibromofluoromethane (Surrogate)

90

94

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (con	tinued)					I	/ethod: ME-(A	U)-[ENV]AN4:
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB110735.002	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.0	5	60 - 140	119
		d8-toluene (Surrogate)	mg/kg	-	3.5	5	60 - 140	70
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.6	5	60 - 140	113
OCs in Water						L. L	lethod: ME-(A	U)-[ENV]AN4
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB110850.002	Monocyclic	Benzene	μg/L	0.5	50	45.45	60 - 140	110
	Aromatic	Toluene	µg/L	0.5	50	45.45	60 - 140	110
		Ethylbenzene	µg/L	0.5	50	45.45	60 - 140	110
		m/p-xylene	µg/L	1	100	90.9	60 - 140	110
		o-xylene	µg/L	0.5	50	45.45	60 - 140	109
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.0	5	60 - 140	99
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.0	5	60 - 140	100
		d8-toluene (Surrogate)	µg/L	-	4.7	5	60 - 140	93
		Bromofluorobenzene (Surrogate)	µg/L	-	4.7	5	60 - 140	94
Volatile Petroleum	Hydrocarbons in a	Soil				N	/lethod: ME-(A	U)-[ENV]AN4:
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB110735.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	97
		TRH C6-C9	mg/kg	20	20	23.2	60 - 140	87
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.7	5	60 - 140	94
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	6.0	5	60 - 140	119
		d8-toluene (Surrogate)	mg/kg	-	3.5	5	60 - 140	70
		Bromofluorobenzene (Surrogate)	mg/kg	-	5.6	5	60 - 140	113
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	121
/eletile Detroloum								
	Hydrocarbons in V	Nater				l l	lethod: ME-(A	U)-[ENV]AN4
Sample Number	-	Nater Parameter	Units	LOR	Result	Expected	Aethod: ME-(A Criteria %	<u> </u>
Sample Number	-		Units µg/L	LOR 50	Result 940		•	<u> </u>
Sample Number	-	Parameter				Expected	Criteria %	Recovery 9
Sample Number	-	Parameter TRH C6-C10	µg/L	50	940	Expected 946.63	Criteria % 60 - 140	Recovery 9 99
Sample Number		Parameter TRH C6-C10 TRH C6-C9	μg/L μg/L	50 40	940 770	Expected 946.63 818.71	Criteria % 60 - 140 60 - 140	Recovery 9 99 94
		Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L	50 40 -	940 770 4.9	Expected 946.63 818.71 5	Criteria % 60 - 140 60 - 140 60 - 140	Recovery 9 99 94 98
Sample Number		Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L	50 40 - -	940 770 4.9 5.0	Expected 946.63 818.71 5 5	Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	Recovery % 99 94 98 101

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	hod: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE157527.001	LB110977.004	Mercury	mg/kg	0.05	0.26	0.09	0.2	85

OC Pesticides in Soil

DC Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN4;										
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%		
SE157527.001	LB110824.023		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-		
			Alpha BHC	mg/kg	0.1	<0.1	-	-		
			Lindane	mg/kg	0.1	<0.1	-	-		
			Heptachlor	mg/kg	0.1	<0.1	0.2	119		
			Aldrin	mg/kg	0.1	<0.1	0.2	110		
			Beta BHC	mg/kg	0.1	<0.1	-	-		
			Delta BHC	mg/kg	0.1	<0.1	0.2	119		
			Heptachlor epoxide	mg/kg	0.1	<0.1	-	-		
			o,p'-DDE	mg/kg	0.1	<0.1	-	-		
			Alpha Endosulfan	mg/kg	0.2	<0.2	-	-		
			Gamma Chlordane	mg/kg	0.1	<0.1	-	-		
			Alpha Chlordane	mg/kg	0.1	<0.1	-	-		
			trans-Nonachlor	mg/kg	0.1	<0.1	-	-		
			p,p'-DDE	mg/kg	0.1	<0.1	-	-		
			Dieldrin	mg/kg	0.2	<0.2	0.2	89		
			Endrin	mg/kg	0.2	<0.2	0.2	120		
			o,p'-DDD	mg/kg	0.1	<0.1	-	-		
			o,p'-DDT	mg/kg	0.1	<0.1	-	-		
			Beta Endosulfan	mg/kg	0.2	<0.2	-	-		
			p,p'-DDD	mg/kg	0.1	<0.1	-	-		
			p,p'-DDT	mg/kg	0.1	<0.1	0.2	124		
			Endosulfan sulphate	mg/kg	0.1	<0.1	-	-		
			Endrin Aldehyde	mg/kg	0.1	<0.1	-	-		
			Methoxychlor	mg/kg	0.1	<0.1	-	-		
			Endrin Ketone	mg/kg	0.1	<0.1	-	-		
			Isodrin	mg/kg	0.1	<0.1	-	-		
			Mirex	mg/kg	0.1	<0.1	-	-		
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	-	83		

OP Pesticides in	Soil				Method: N	ME-(AU)-[ENV]AN400/A		
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE157527.001	LB110824.023		Dichlorvos	mg/kg	0.5	<0.5	2	85
			Dimethoate	mg/kg	0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	77
			Fenitrothion	mg/kg	0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	89
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	-	-
			Ethion	mg/kg	0.2	<0.2	2	73
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	84
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	96

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

PAH (Polynuclea	r Aromatic Hydrocarbons) in S	oil				М	ethod: ME-(AU)-[ENV]AN
QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
SE157527.001	LB110824.023	Naphthalene	mg/kg	0.1	<0.1	4	101
		2-methylnaphthalene	mg/kg	0.1	<0.1	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	-	-
		Acenaphthylene	mg/kg	0.1	<0.1	4	98
		Acenaphthene	mg/kg	0.1	<0.1	4	101
		Fluorene	mg/kg	0.1	<0.1	-	-
		Phenanthrene	mg/kg	0.1	<0.1	4	103
		Anthracene	mg/kg	0.1	<0.1	4	101
		Fluoranthene	mg/kg	0.1	0.3	4	114

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

		, (for the second
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE157527.001	LB110824.023		Pyrene	mg/kg	0.1	0.2	4	102	
			Benzo(a)anthracene	mg/kg	0.1	0.2	-	-	
			Chrysene	mg/kg	0.1	0.1	-	-	
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	-	-	
			Benzo(k)fluoranthene	mg/kg	0.1	0.1	-	-	
			Benzo(a)pyrene	mg/kg	0.1	0.2	4	105	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.1	-	-	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	-	-	
			Benzo(ghi)perylene	mg/kg	0.1	0.1	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>0.2</td><td>-</td><td>-</td><td></td></lor=0<>	TEQ	0.2	0.2	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.3</td><td>-</td><td>-</td><td></td></lor=lor<>	TEQ (mg/kg)	0.3	0.3	-	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.3</td><td>-</td><td>-</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	0.3	-	-	
			Total PAH (18)	mg/kg	0.8	1.5	-	-	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	-	84	
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	84	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	-	96	
Total Phenolics i	n Soil						Me	othod: ME-(AU)	-[ENV]AN289
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE157443.013	LB110743.015		Total Phenols	mg/kg	0.1	2.4	<0.1	2.5	95

Total Phenolics in Water Method: ME									
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%	
SE155387.002	LB110849.010	Total Phenols	mg/L	0.01	0.22	<0.01	0.25	86	

Method: ME-(AU)-[ENV]AN318 Trace Metals (Dissolved) in Water by ICPMS QC Sample Sample Number LOR Result Original Spike Recovery% Parameter Units SE157471.013 LB110745.004 Arsenic, As 20 20 102 µg/L 1 <1 Cadmium, Cd µg/L 0.1 22 < 0.1 20 112 Chromium, Cr µg/L 23 <1 20 114 1 23 <1 20 115 Copper, Cu µg/L 1 Lead, Pb µg/L 1 22 <1 20 112 Nickel, Ni µg/L 21 <1 20 105 1 5 22 <5 20 101 Zinc, Zn µg/L TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Original Spike Recovery% QC Sample Sample Number Units LOR Parameter SE157526.001 LB110824.023 TRH C10-C14 mg/kg 20 <20 40 95

	TRH C15-C28	mg/kg	45	<45	40	
	TRH C29-C36	mg/kg	45	<45	40	
	TRH C37-C40	mg/kg	100	<100	-	
	TRH C10-C36 Total	mg/kg	110	<110	-	
	TRH C10-C40 Total	mg/kg	210	<210	-	_
TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	40	
	TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	-	
	TRH >C16-C34 (F3)	mg/kg	90	<90	40	
	TRH >C34-C40 (F4)	mg/kg	120	<120	-	

Method: ME-(AU)-[ENV]AN433

VOC's in Soil							Meth	od: ME-(AL)-[ENV]AN433
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE157545.001	LB110735.004	Monocyclic	Benzene	mg/kg	0.1	2.1	<0.1	2.9	73
		Aromatic	Toluene	mg/kg	0.1	1.9	<0.1	2.9	65
			Ethylbenzene	mg/kg	0.1	1.9	<0.1	2.9	64
			m/p-xylene	mg/kg	0.2	4.7	<0.2	5.8	81
			o-xylene	mg/kg	0.1	2.2	<0.1	2.9	74
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.9	4.0	-	97
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	4.1	-	91

MATRIX SPIKES

80

107

83

80

97

91

80

107

108

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN433 VOC's in Soil (continued) QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery% SE157545.001 LB110735.004 Surrogates d8-toluene (Surrogate) mg/kg 4.0 5.3 Bromofluorobenzene (Surrogate) mg/kg 5.3 5.4 Totals Total Xylenes* 0.3 6.8 <0.3 mg/kg 0.6 Total BTEX mg/kg 13 <0.6 -Method: ME-(AU)-[ENV]AN433 Volatile Petroleum Hydrocarbons in Soil Result QC Sample Sample Number Spike Recovery% Units LOR Original Parameter SE157545.001 LB110735.004 TRH C6-C10 25 <25 <25 24.65 mg/kg TRH C6-C9 mg/kg 20 <20 <20 23.2 Surrogates Dibromofluoromethane (Surrogate) mg/kg 4.9 4.0 d4-1,2-dichloroethane (Surrogate) 4.5 4.1 mg/kg d8-toluene (Surrogate) mg/kg 4.0 5.3 --Bromofluorobenzene (Surrogate) mg/kg 5.3 5.4 -VPH F Benzene (F0) 0.1 2.1 <0.1 mg/kg TRH C6-C10 minus BTEX (F1) 7.25 <25 <25 Bands mg/kg 25

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

SGS Environmental Services					С	HAIN (OF (CUS	то	DY	& ANA	LYS	SIS	SR	EQ	UE	ST								Page	1 of 1		
		Co	mpany	Nam	e: S	MEC							1	Project Name/No: 3002523 -				- Can	herra	Brick	work	6		_				
Unit 16, 33 Maddox St		Add	Address:			Suite 2, Level 1, 243 Northbourne Avenue, Lyneham,						Project Name/No: 3002523 – Canberra Brickworks Purchase Order No:							_									
Alexandria NSW 2015					_A	CT, 2602, A	ustrali	а					F	Result	ts Re	quire	d By:	1	Ryan	O'Le	eary							
Telephone No: (02) 85														Felepł	none:			-	61 2	623	4 196	3/04	400 24	40 02	3			
Facsimile No: (02) 85940499 Email: au.samplereceipt.sydney@sgs.com			ntact N	lame:	R	lyan O'Lear	/						_ F	acsir	nile:													
Linali. au.sampiereceipt.syoney@sgs.com			1				n	T					E	Email	Resu	lts:		E	Ryan.C	D'Lea	ary@s	smec.	.com					
Client Sample ID	Date Sampled	Lab Samp ID	le	WALEN SOIL	ault	NO OF CONTAINERS	BTEXN	OPPs	OCPs	PAHs/Phenois	8H Metals - As, Cd, Cr, Cu, Ni, Pb, Zn , Hg	ТРН/ТКН				S	gs e	HS	Alexa	ndri	ia La	bora	tory			Comment		
M2	28/9/2016	1	~			5	V	\checkmark	$\overline{\mathbf{v}}$	V	<u>↓</u> .	V	-	-	+	5	SE1	57	65	9 (CO	C		÷		0		
M3	28/9/2016	2				5	V	V		V		V		-		R	eceiv	ed:	30 -	Sep	-20	16						
QC22	28/9/2016	7		-		5	V	7		V				_														
QC23	28/9/2016	2		_	_	5	V	7	V	V	N N	V		-		_												
			-l-		_		v	V	V	V	V	V											F	Pleas	se sen	d to A	LS Sy	dney
Relinquished By: Ryan O'					00/0																							
Relinquished By:	Leary 700					2016 16:00)				Received E								Da	ate/T	Time							
			Date/								Received E								Da	ate/T	ime	30	01911	16 0),		10:00)
amples Intact: Yes/ No						mbient / Cl	17	16-4	5	S	Sample Cooler Sealed: Yes/ No Laboratory					atory						0.00						
	ž.					PER SGS C																						
			SY1 - 60413 - 2-IS DATED 13TH APRIL 2016				6																					
	Laboratory t dissolved					Iter metals	and r	eport	as																			

SAMPLE RECEIPT ADVICE

- CLIENT DETAIL	S	LABORATORY DETA	MLS
Contact	Ryan O'Leary	Manager	Huong Crawford
Client	SMEC AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Sun Micro Building Suite 2, Level 1 243 Northbourne Avenue ACT 2602	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 6234 1963	Telephone	+61 2 8594 0400
Facsimile	02 6234 1966	Facsimile	+61 2 8594 0499
Email	Ryan.O'Leary@smec.com	Email	au.environmental.sydney@sgs.com
Project	3002523 - Canberra Brickworks	Samples Received	Fri 30/9/2016
Order Number	SY1-60413-2-IS	Report Due	Mon 10/10/2016
Samples	3	SGS Reference	SE157659

_ SUBMISSION DETAILS

This is to confirm that 3 samples were received on Friday 30/9/2016. Results are expected to be ready by Monday 10/10/2016. Please quote SGS reference SE157659 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 3 Water 30/9/2016 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled Number of eskies/boxes received COC Yes 16.8°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

QC23 has been forwarded to ALS Sydney.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

__ CLIENT DETAILS __

Client SMEC AUSTRALIA PTY LTD

Project 3002523 - Canberra Brickworks

				natic er	2	(p	e ب		
No.	Sample ID	OC Pesticides in Water	OP Pesticides in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Total Phenolics in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	M2	28	13	22	1	7	9	12	8
002	М3	28	13	22	1	7	9	12	8
003	QC22	28	13	22	1	7	9	12	8

SAMPLE RECEIPT ADVICE

__ CLIENT DETAILS __

- SUMMARY OF ANALYSIS -

Client SMEC AUSTRALIA PTY LTD

Project 3002523 - Canberra Brickworks

No.	Sample ID	Mercury (dissolved) in Water	
001	M2	1	
002	М3	1	
003	QC22	1	

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

ontact	Ryan O'Leary	Manager	Huong Crawford
Client	SMEC AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Sun Micro Building Suite 2, Level 1 243 Northbourne Avenue ACT 2602	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 6234 1963	Telephone	+61 2 8594 0400
Facsimile	02 6234 1966	Facsimile	+61 2 8594 0499
Email	Ryan.O'Leary@smec.com	Email	au.environmental.sydney@sgs.com
Project	3002523 - Canberra Brickworks	SGS Reference	SE157659 R0
Order Number	SY1-60413-2-IS	Date Received	30/9/2016
Samples	3	Date Reported	10/10/2016

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Kinty

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Dong Liang

Metals/Inorganics Team Leader

Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 Australia f +61 2 8594 0499 Australia

Kamrul Ahsan

Senior Chemist

www.sgs.com.au

ANALYTICAL RESULTS

SE157659 R0

VOCs in Water [AN433] Tested: 4/10/2016

			M2	M3	QC22
			WATER	WATER	WATER
			-	-	-
PARAMETER	UOM	LOR	28/9/2016 SE157659.001	28/9/2016 SE157659.002	28/9/2016 SE157659.003
Benzene	µg/L	0.5	1.0	<0.5	0.8
Toluene	µg/L	0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3	<3
Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 4/10/2016

			M2	M3	QC22
			WATER	WATER	WATER
			- 28/9/2016	- 28/9/2016	- 28/9/2016
PARAMETER	UOM	LOR	SE157659.001	SE157659.002	SE157659.003
TRH C6-C9	µg/L	40	<40	<40	<40
Benzene (F0)	µg/L	0.5	1.0	<0.5	0.8
TRH C6-C10	µg/L	50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50

ANALYTICAL RESULTS

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 4/10/2016

			M2	M3	QC22
			WATER	WATER	WATER
			- 28/9/2016	- 28/9/2016	- 28/9/2016
PARAMETER	UOM	LOR	SE157659.001	SE157659.002	SE157659.003
TRH C10-C14	μg/L	50	<50	<50	<50
TRH C15-C28	μg/L	200	<200	<200	<200
TRH C29-C36	μg/L	200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200
TRH >C10-C16 (F2)	µg/L	60	<60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500
TRH C10-C36	μg/L	450	<450	<450	<450
TRH C10-C40	µg/L	650	<650	<650	<650

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 4/10/2016

			M2	M3	QC22
			WATER	WATER	WATER
			28/9/2016	28/9/2016	28/9/2016
PARAMETER	UOM	LOR	SE157659.001	SE157659.002	SE157659.003
Naphthalene	µg/L	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	<0.1
Total PAH (18)	μg/L	1	<1	<1	<1

ANALYTICAL RESULTS

SE157659 R0

OC Pesticides in Water [AN400/AN420] Tested: 4/10/2016

			M2	M3	QC22
			WATER	WATER	WATER
			-	-	-
PARAMETER	UOM	LOR	28/9/2016 SE157659.001	28/9/2016 SE157659.002	28/9/2016 SE157659.003
Hexachlorobenzene (HCB)	µg/L	0.1	<0.1	<0.1	<0.1
Alpha BHC	µg/L	0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	µg/L	0.1	<0.1	<0.1	<0.1
Heptachlor	µg/L	0.1	<0.1	<0.1	<0.1
Aldrin	µg/L	0.1	<0.1	<0.1	<0.1
Beta BHC	µg/L	0.1	<0.1	<0.1	<0.1
Delta BHC	µg/L	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	µg/L	0.1	<0.1	<0.1	<0.1
o,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1
Gamma Chlordane	µg/L	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	µg/L	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	µg/L	0.1	<0.1	<0.1	<0.1
p,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1
Dieldrin	µg/L	0.1	<0.1	<0.1	<0.1
Endrin	µg/L	0.1	<0.1	<0.1	<0.1
o,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1
o,p'-DDT	µg/L	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1
p,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1
p,p'-DDT	µg/L	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	µg/L	0.1	<0.1	<0.1	<0.1
Endrin aldehyde	µg/L	0.1	<0.1	<0.1	<0.1
Methoxychlor	µg/L	0.1	<0.1	<0.1	<0.1
Endrin ketone	µg/L	0.1	<0.1	<0.1	<0.1
Isodrin	µg/L	0.1	<0.1	<0.1	<0.1
Mirex	µg/L	0.1	<0.1	<0.1	<0.1

ANALYTICAL RESULTS

OP Pesticides in Water [AN400/AN420] Tested: 4/10/2016

			M2	M3	QC22
			WATER	WATER	WATER
			- 28/9/2016	- 28/9/2016	- 28/9/2016
PARAMETER	UOM	LOR	SE157659.001	SE157659.002	SE157659.003
Dichlorvos	µg/L	0.5	<0.5	<0.5	<0.5
Dimethoate	µg/L	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	µg/L	0.5	<0.5	<0.5	<0.5
Fenitrothion	µg/L	0.2	<0.2	<0.2	<0.2
Malathion	µg/L	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	µg/L	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	μg/L	0.2	<0.2	<0.2	<0.2
Methidathion	µg/L	0.5	<0.5	<0.5	<0.5
Ethion	µg/L	0.2	<0.2	<0.2	<0.2
Azinphos-methyl	μg/L	0.2	<0.2	<0.2	<0.2

Total Phenolics in Water [AN289] Tested: 5/10/2016

			M2	M3	QC22
			WATER	WATER	WATER
			-	-	-
PARAMETER	UOM	LOR	28/9/2016 SE157659.001	28/9/2016 SE157659.002	28/9/2016
FARAMETER	UOIW	LOK	SE157659.001	SE157659.002	SE157659.003
Total Phenols	mg/L	0.01	<0.01	<0.01	0.02

ANALYTICAL RESULTS

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 5/10/2016

			M2	M3	QC22
			WATER	WATER	WATER
			28/9/2016	28/9/2016	28/9/2016
PARAMETER	UOM	LOR	SE157659.001	SE157659.002	SE157659.003
Arsenic, As	µg/L	1	<1	<1	<1
Cadmium, Cd	µg/L	0.1	1.3	<0.1	1.4
Chromium, Cr	µg/L	1	<1	<1	<1
Copper, Cu	µg/L	1	4	1	4
Lead, Pb	µg/L	1	<1	<1	<1
Nickel, Ni	µg/L	1	20	2	20
Zinc, Zn	µg/L	5	67	21	64

ANALYTICAL RESULTS

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 6/10/2016

			M2	M3	QC22
			WATER	WATER	WATER
			28/9/2016	28/9/2016	28/9/2016
PARAMETER	UOM	LOR	SE157659.001	SE157659.002	SE157659.003
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001

	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is not corrected for Naphthalene.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS /ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.

Not analysed. NVL Not validated. IS LNR

Insufficient sample for analysis. Sample listed, but not received.

UOM LOR î↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-OU-02

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS	i	LABORATORY DETAI	ILS
Contact	Ryan O'Leary	Manager	Huong Crawford
Client	SMEC AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Sun Micro Building Suite 2, Level 1 243 Northbourne Avenue ACT 2602	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 6234 1963	Telephone	+61 2 8594 0400
Facsimile	02 6234 1966	Facsimile	+61 2 8594 0499
Email	Ryan.O'Leary@smec.com	Email	au.environmental.sydney@sgs.com
Project	3002523 - Canberra Brickworks	SGS Reference	SE157659 R0
Order Number	SY1-60413-2-IS	Date Received	30 Sep 2016
Samples	3	Date Reported	10 Oct 2016

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Water							Method: ME-(AU)-[ENV]AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M2	SE157659.001	LB111204	28 Sep 2016	30 Sep 2016	26 Oct 2016	06 Oct 2016	26 Oct 2016	07 Oct 2016
M3	SE157659.002	LB111204	28 Sep 2016	30 Sep 2016	26 Oct 2016	06 Oct 2016	26 Oct 2016	07 Oct 2016
QC22	SE157659.003	LB111204	28 Sep 2016	30 Sep 2016	26 Oct 2016	06 Oct 2016	26 Oct 2016	07 Oct 2016
OC Pesticides in Water							Method: ME-(AL)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M2	SE157659.001	LB110969	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	06 Oct 2016
M3	SE157659.002	LB110969	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	06 Oct 2016
QC22	SE157659.003	LB110969	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	06 Oct 2016
OP Pesticides in Water							Method: ME-(AL)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M2	SE157659.001	LB110969	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	05 Oct 2016
M3	SE157659.002	LB110969	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	05 Oct 2016
QC22	SE157659.003	LB110969	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	05 Oct 2016
PAH (Polynuclear Aromatic H	lydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M2	SE157659.001	LB110969	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	05 Oct 2016
M3	SE157659.002	LB110969	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	05 Oct 2016
QC22	SE157659.003	LB110969	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	05 Oct 2016
Total Phenolics in Water							Method:	ME-(AU)-[ENV]AN289
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M2	SE157659.001	LB111042	28 Sep 2016	30 Sep 2016	26 Oct 2016	05 Oct 2016	26 Oct 2016	05 Oct 2016
M3	SE157659.002	LB111042	28 Sep 2016	30 Sep 2016	26 Oct 2016	05 Oct 2016	26 Oct 2016	05 Oct 2016
QC22	SE157659.003	LB111042	28 Sep 2016	30 Sep 2016	26 Oct 2016	05 Oct 2016	26 Oct 2016	05 Oct 2016
Trace Metals (Dissolved) in V	Nater by ICPMS						Method:	ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M2	SE157659.001	LB111038	28 Sep 2016	30 Sep 2016	27 Mar 2017	05 Oct 2016	27 Mar 2017	06 Oct 2016
M3	SE157659.002	LB111038	28 Sep 2016	30 Sep 2016	27 Mar 2017	05 Oct 2016	27 Mar 2017	06 Oct 2016
QC22	SE157659.003	LB111038	28 Sep 2016	30 Sep 2016	27 Mar 2017	05 Oct 2016	27 Mar 2017	06 Oct 2016
TRH (Total Recoverable Hyd	lrocarbons) in Water						Method:	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M2	SE157659.001	LB110969	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	05 Oct 2016
M3	SE157659.002	LB110969	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	05 Oct 2016
QC22	SE157659.003	LB110969	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	05 Oct 2016
VOCs in Water							Method:	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M2	SE157659.001	LB110965	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	10 Oct 2016
M3	SE157659.002	LB110965	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	10 Oct 2016
QC22	SE157659.003	LB110965	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	10 Oct 2016
Volatile Petroleum Hydrocart	oons in Water						Method:	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M2	SE157659.001	LB110965	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	10 Oct 2016
М3	SE157659.002	LB110965	28 Sep 2016	30 Sep 2016	05 Oct 2016	04 Oct 2016	13 Nov 2016	10 Oct 2016
						01.00(2010	101101 2010	10 000 2010

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Water				Method: ME-(AU)-	ENVJAN400/AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	M2	SE157659.001	%	40 - 130%	62
	M3	SE157659.002	%	40 - 130%	64
	QC22	SE157659.003	%	40 - 130%	62
OP Pesticides in Water				Method: ME-(AU)-	ENVIAN400/AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	M2	SE157659.001	%	40 - 130%	52
	M3	SE157659.002	%	40 - 130%	68
	QC22	SE157659.003	%	40 - 130%	68
d14-p-terphenyl (Surrogate)	M2	SE157659.001	%	40 - 130%	66
	M3	SE157659.002	%	40 - 130%	86
	QC22	SE157659.003	%	40 - 130%	76
ALL (Debruchen Aremetic Lindersentene) in Weter		32137033.003	76		
PAH (Polynuclear Aromatic Hydrocarbons) in Water					E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	M2	SE157659.001	%	40 - 130%	52
	M3	SE157659.002	%	40 - 130%	68
	QC22	SE157659.003	%	40 - 130%	68
d14-p-terphenyl (Surrogate)	M2	SE157659.001	%	40 - 130%	66
	M3	SE157659.002	%	40 - 130%	86
	QC22	SE157659.003	%	40 - 130%	76
d5-nitrobenzene (Surrogate)	M2	SE157659.001	%	40 - 130%	52
	M3	SE157659.002	%	40 - 130%	66
	QC22	SE157659.003	%	40 - 130%	64
VOCs in Water				Method: ME	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	M2	SE157659.001	%	40 - 130%	90
	M3	SE157659.002	%	40 - 130%	91
	QC22	SE157659.003	%	40 - 130%	90
d4-1,2-dichloroethane (Surrogate)	M2	SE157659.001	%	40 120%	440
	M3		70	40 - 130%	112
		SE157659.002	%	40 - 130%	107
	QC22	SE157659.002 SE157659.003			
d8-toluene (Surrogate)			%	40 - 130%	107
d8-toluene (Surrogate)	QC22	SE157659.003	%	40 - 130% 40 - 130%	107 101
d8-toluene (Surrogate)	QC22 M2	SE157659.003 SE157659.001	% % %	40 - 130% 40 - 130% 40 - 130%	107 101 95
d8-toluene (Surrogate) Dibromofluoromethane (Surrogate)	QC22 M2 M3	SE157659.003 SE157659.001 SE157659.002	% % %	40 - 130% 40 - 130% 40 - 130% 40 - 130%	107 101 95 97
	QC22 M2 M3 QC22	SE157659.003 SE157659.001 SE157659.002 SE157659.003	% % % %	40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130%	107 101 95 97 84
	QC22 M2 M3 QC22 M2	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001	% % % % %	40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130% 40 - 130%	107 101 95 97 84 116
Dibromofluoromethane (Surrogate)	QC22 M2 M3 QC22 M2 M3	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002	% % % % %	40 - 130% 40 - 130%	107 101 95 97 84 116 109 114
Dibromofluoromethane (Surrogate) /olatile Petroleum Hydrocarbons in Water	QC22 M2 M3 QC22 M2 M3 QC22 M2 QC22	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.002 SE157659.003	% % % % % %	40 - 130% 40 - 130% Method: Mitesting 40 - 130%	107 101 95 97 84 116 109 114 E-(AU)-[ENV]AN4
Dibromofluoromethane (Surrogate) Volatile Petroleum Hydrocarbons in Water Parameter	QC22 M2 M3 QC22 M2 M3 QC22 M3 QC22 Sample Name	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.002 SE157659.003 Sample Number	% % % % % % % Units	40 - 130% 40 - 130% Method: Mit Criteria	107 101 95 97 84 116 109 114 E-(AU)-[ENV]AN4 Recovery %
Dibromofluoromethane (Surrogate) Volatile Petroleum Hydrocarbons in Water Parameter	QC22 M2 M3 QC22 M2 M3 QC22 M2 M3 QC22 Sample Name M2	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.002 SE157659.003 Sample Number SE157659.001	% % % % % % Units %	40 - 130% 40 - 130% Method: Mis Criteria 40 - 130%	107 101 95 97 84 116 109 114
Dibromofluoromethane (Surrogate) Volatile Petroleum Hydrocarbons in Water Parameter	QC22 M2 M3 QC22 M2 M3 QC22 M3 QC22 Sample Name	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.002 SE157659.003 Sample Number SE157659.001 SE157659.002	% % % % % % % Units %	40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130%	107 101 95 97 84 116 109 114 E-(AU)-[ENV]AN4 Recovery % 90 91
Dibromofluoromethane (Surrogate) Tolatile Petroleum Hydrocarbons in Water Parameter Bromofluorobenzene (Surrogate)	QC22 M2 M3 QC22 M2 M3 QC22 M3 QC22 Sample Name M2 M3	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.001 SE157659.002 SE157659.002 SE157659.003	% % % % % % Units %	40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 40 - 130%	107 101 95 97 84 116 109 114 E-(AU)-[ENV]AN Recovery % 90 91 90
Dibromofluoromethane (Surrogate) Volatile Petroleum Hydrocarbons in Water	QC22 M2 M3 QC22 M2 M3 QC22 Sample Name M2 M3 QC22 M3 QC22 M2	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001	% % % % % % Units % % %	40 - 130% 40 - 130% Method: ME Criteria 40 - 130% 40 - 130% 40 - 130% 60 - 130%	107 101 95 97 84 116 109 114 E-(AU)-[ENV]AN4 Recovery % 90 91 90 91
Dibromofluoromethane (Surrogate) /olatile Petroleum Hydrocarbons in Water Parameter Bromofluorobenzene (Surrogate)	QC22 M2 M3 QC22 M2 M3 QC22 Sample Name M2 M3 QC22 M2 M3 QC22 M2 M3 QC22 M2 M3	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.003 SE157659.003 SE157659.001 SE157659.001 SE157659.002	% % % % % % Units % % %	40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 40 - 130% 60 - 130% 60 - 130%	107 101 95 97 84 116 109 114 E-(AU)-[ENV]AN4 Recovery % 90 91 90 91 90 112 107
Dibromofluoromethane (Surrogate) Volatile Petroleum Hydrocarbons in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	QC22 M2 M3 QC22 M2 M3 QC22 Sample Name M2 M3 QC22 M2 M3 QC22 M2 M3 QC22	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.003 SE157659.003 SE157659.003 SE157659.001 SE157659.002 SE157659.003	% %	40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 40 - 130% 60 - 130% 60 - 130%	107 101 95 97 84 116 109 114 E-(AU)-[ENV]AN4 Recovery % 90 91 90 91 112 107 101
Dibromofluoromethane (Surrogate) /olatile Petroleum Hydrocarbons in Water Parameter Bromofluorobenzene (Surrogate)	QC22 M2 M3 QC22 M2 M3 QC22 Sample Name M2 M3 QC22 M2 M3 QC22 M2 M3 QC22 M2 M3 QC22 M2 M3	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.001	% %	40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 60 - 130% 60 - 130%	107 101 95 97 84 116 109 114 E-(AU)-[ENV]AN4 Recovery % 90 91 90 91 112 107 101 95
Dibromofluoromethane (Surrogate) Volatile Petroleum Hydrocarbons in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	QC22 M2 M3 QC22 M2 M3 QC22 M2 M3 QC22 Sample Name M2 M3 QC22 M2 M3 QC22 M2 M3 QC22 M2 M3	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.002 SE157659.003 SE157659.003 SE157659.001 SE157659.002	% %	40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 60 - 130% 60 - 130% 60 - 130% 40 - 130%	107 101 95 97 84 116 109 114 E-(AU)-[ENV]AN4 Recovery % 90 91 90 91 112 107 101 95 97
Dibromofluoromethane (Surrogate) /olatile Petroleum Hydrocarbons in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	QC22 M2 M3 QC22 M2 M3 QC22 M2 M3 QC22 Sample Name M2 M3 QC22 M2 M3 QC22 M2 M3 QC22 M2 M3 QC22	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.002 SE157659.003 SE157659.003 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003	% %	40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 60 - 130% 60 - 130% 60 - 130% 40 - 130% 40 - 130%	107 101 95 97 84 116 109 114 E-(AU)-[ENV]AN4 Recovery % 90 91 90 91 112 107 101 95 97 84
Dibromofluoromethane (Surrogate) /olatile Petroleum Hydrocarbons in Water Parameter Bromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate)	QC22 M2 M3 QC22 M2 M3 QC22 M2 M3 QC22 Sample Name M2 M3 QC22 M2 M3 QC22 M2 M3 QC22 M2 M3	SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.001 SE157659.002 SE157659.003 SE157659.003 SE157659.003 SE157659.003 SE157659.002 SE157659.003 SE157659.003 SE157659.001 SE157659.002	% %	40 - 130% 40 - 130% Method: Mi Criteria 40 - 130% 40 - 130% 60 - 130% 60 - 130% 60 - 130% 40 - 130%	107 101 95 97 84 116 109 114 E-(AU)-[ENV]AN4 Recovery % 90 91 90 112 107 101 95 97

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water	Method: ME-(AU)-[E	ENV]AN311(Perth)/AN312		
Sample Number	Parameter	Units	LOR	Result
LB111204.001	Mercury	mg/L	0.0001	<0.0001

OC Pesticides in Water

OC Pesticides in Water				-(AU)-[ENV]AN400//
Sample Number	Parameter	Units	LOR	Result
B110969.001	Hexachlorobenzene (HCB)	μg/L	0.1	<0.1
	Alpha BHC	μg/L	0.1	<0.1
	Lindane (gamma BHC)	μg/L	0.1	<0.1
	Heptachlor	μg/L	0.1	<0.1
	Aldrin	μg/L	0.1	<0.1
	Beta BHC	μg/L	0.1	<0.1
	Delta BHC	μg/L	0.1	<0.1
	Heptachlor epoxide	μg/L	0.1	<0.1
	Alpha Endosulfan	μg/L	0.1	<0.1
	Gamma Chlordane	μg/L	0.1	<0.1
	Alpha Chlordane	µg/L	0.1	<0.1
	p,p'-DDE	µg/L	0.1	<0.1
	Dieldrin	µg/L	0.1	<0.1
	Endrin	μg/L	0.1	<0.1
	Beta Endosulfan	μg/L	0.1	<0.1
	p,p'-DDD	µg/L	0.1	<0.1
	p,p'-DDT	µg/L	0.1	<0.1
	Endosulfan sulphate	µg/L	0.1	<0.1
	Endrin aldehyde	μg/L	0.1	<0.1
	Methoxychlor	μg/L	0.1	<0.1
	Endrin ketone	μg/L	0.1	<0.1
	Isodrin	µg/L	0.1	<0.1
	Mirex	µg/L	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	75
P Pesticides in Water			Method: ME	-(AU)-[ENV]AN400//
ample Number	Parameter	Units	LOR	Result
3110969.001	Dichlorvos	μg/L	0.5	<0.5
	Dimethoate	μg/L	0.5	<0.5
	Diazinon (Dimpylate)	μg/L	0.5	<0.5
	Fenitrothion	μg/L	0.2	<0.2
	Malathion	μg/L	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	<0.2
	Parathion-ethyl (Parathion)	μg/L	0.2	<0.2
	Bromophos Ethyl	μg/L	0.2	<0.2
	Methidathion	μg/L	0.5	<0.5
	Ethion	μg/L	0.2	<0.2
	Azinphos-methyl	μg/L	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	pgr%		72
Canogatos	d14-p-terphenyl (Surrogate)	%		94
AH (Polynuclear Aromatic Hydrocarbons) in Wat		/0		od: ME-(AU)-[ENV]/
			Would	and the first frank h

Sample Number	Parameter	Units	LOR	Result
LB110969.001	Naphthalene	μg/L	0.1	<0.1
	2-methylnaphthalene	μg/L	0.1	<0.1
	1-methylnaphthalene	µg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene Fluorene	μg/L	0.1	<0.1
		μg/L	0.1	<0.1
	Phenanthrene	μg/L	0.1	<0.1
	Anthracene	μg/L	0.1	<0.1
	Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(a)pyrene	µg/L	0.1	<0.1

METHOD BLANKS

SE157659 R0

Method: ME-(AU)-[ENV]AN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Water (continued)

Sample Number		Parameter	Units	LOR	Result
LB110969.001		Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
		Dibenzo(ah)anthracene	μg/L	0.1	<0.1
		Benzo(ghi)perylene	µg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	74	
	Currogates	2-fluorobiphenyl (Surrogate)	%	-	72
		d14-p-terphenyl (Surrogate)	%	-	94
Total Phenolics in Water				Meth	od: ME-(AU)-[ENV]AN28
Sample Number		Parameter	Units	LOR	Result
LB111042.001		Total Phenols	mg/L	0.01	<0.01

Trace Metals (Dissolve	d) in Water by ICPMS			Metho	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB111038.001		Arsenic, As	µg/L	1	<1
		Cadmium, Cd	µg/L	0.1	<0.1
		Chromium, Cr	µg/L	1	<1
		Copper, Cu	µg/L	1	<1
		Lead, Pb	µg/L	1	<1
		Nickel, Ni	µg/L	1	<1
		Zinc, Zn	µg/L	5	<5
RH (Total Recoverabl	le Hydrocarbons) in Water			Metho	d: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB110969.001		TRH C10-C14	µg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	μg/L	200	<200
OCs in Water				Metho	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B110965.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	106
		d4-1,2-dichloroethane (Surrogate)	%	-	103
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	89
/olatile Petroleum Hyd	rocarbons in Water			Metho	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB110965.001		TRH C6-C9	µg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	106
		d4-1,2-dichloroethane (Surrogate)	%	-	103
		d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	%	-	103 96

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN								erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE157685.006	LB111204.014	Mercury	μg/L	0.0001	-0.0028	-0.0022	200	0
SE157752.009	LB111204.024	Mercury	µg/L	0.0001	0.0278	0.025	200	11

Total Phenolics in Water

Total Phenolics in Water Method: ME-(AU)-[ENV]AN						ENVJAN289		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE157610.002	LB111042.004	Total Phenols	mg/L	0.01	0.03	0.03	162	0

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Diss	solved) in Water by ICPMS					Meth	od: ME-(AU)-	ENVJAN318
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE157685.006	LB111038.021	Arsenic, As	µg/L	1	-0.003	-0.006	200	0
		Cadmium, Cd	µg/L	0.1	-0.001	-0.001	200	0
		Chromium, Cr	µg/L	1	-0.018	-0.013	200	0
		Copper, Cu	μg/L	1	-0.276	-0.309	200	0
		Lead, Pb	µg/L	1	0.004	-0.007	200	0
		Nickel, Ni	µg/L	1	-0.042	-0.051	200	0
		Zinc, Zn	µg/L	5	1.482	1.065	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

OC Pesticides in W	ater					Method	ME-(AU)-[EN\	/IAN400/AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
LB110969.002		Heptachlor	µg/L	0.1	0.2	0.2	60 - 140	119
		Aldrin	μg/L	0.1	0.2	0.2	60 - 140	122
		Delta BHC	μg/L	0.1	0.2	0.2	60 - 140	116
		Dieldrin	μg/L	0.1	0.2	0.2	60 - 140	125
		Endrin	μg/L	0.1	0.2	0.2	60 - 140	104
		p,p'-DDT	μg/L	0.1	0.2	0.2	60 - 140	107
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	μg/L	-	0.15	0.15	40 - 130	97
P Pesticides in W	ater					Method:	ME-(AU)-[EN\	/]AN400/AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B110969.002		Dichlorvos	μg/L	0.5	9.5	8	60 - 140	118
		Diazinon (Dimpylate)	μg/L	0.5	9.6	8	60 - 140	121
		Chlorpyrifos (Chlorpyrifos Ethyl)	µg/L	0.2	9.1	8	60 - 140	114
		Ethion	µg/L	0.2	9.9	8	60 - 140	124
	Surrogates	2-fluorobiphenyl (Surrogate)	µg/L	-	0.4	0.5	40 - 130	74
		d14-p-terphenyl (Surrogate)	µg/L	-	0.5	0.5	40 - 130	90
AH (Polynuclear A	vomatic Hydroca	arbons) in Water				1	Method: ME-(A	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B110969.002		Naphthalene	µg/L	0.1	33	40	60 - 140	82
		Acenaphthylene	µg/L	0.1	38	40	60 - 140	95
		Acenaphthene	µg/L	0.1	39	40	60 - 140	99
		Phenanthrene	μg/L	0.1	36	40	60 - 140	90
		Anthracene	μg/L	0.1	36	40	60 - 140	89
		Fluoranthene	μg/L	0.1	42	40	60 - 140	104
		Pyrene	µg/L	0.1	30	40	60 - 140	76
		Benzo(a)pyrene	μg/L	0.1	43	40	60 - 140	107
	Surrogates	d5-nitrobenzene (Surrogate)	μg/L	-	0.4	0.5	40 - 130	74
		2-fluorobiphenyl (Surrogate)	μg/L	-	0.4	0.5	40 - 130	74
		d14-p-terphenyl (Surrogate)	μg/L	-	0.5	0.5	40 - 130	90
otal Phenolics in V	Vater					1	Method: ME-(A	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB111042.002		Total Phenois	mg/L	0.01	0.23	0.25	80 - 120	92

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dissolved) in V	Vater by ICPMS				N	/lethod: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB111038.002	Arsenic, As	μg/L	1	20	20	80 - 120	101
	Cadmium, Cd	μg/L	0.1	22	20	80 - 120	111
	Chromium, Cr	μg/L	1	23	20	80 - 120	116
	Copper, Cu	μg/L	1	23	20	80 - 120	115
	Lead, Pb	μg/L	1	23	20	80 - 120	114
	Nickel, Ni	μg/L	1	21	20	80 - 120	106
	Zinc, Zn	µg/L	5	21	20	80 - 120	105

TRH (Total Recoverable Hydrocarbons) in Water

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB110969.002		TRH C10-C14	μg/L	50	930	1200	60 - 140	78
		TRH C15-C28	µg/L	200	1200	1200	60 - 140	99
		TRH C29-C36	μg/L	200	1400	1200	60 - 140	116
	TRH F Bands	TRH >C10-C16 (F2)	μg/L	60	1100	1200	60 - 140	88
		TRH >C16-C34 (F3)	μg/L	500	1300	1200	60 - 140	110
		TRH >C34-C40 (F4)	μg/L	500	720	600	60 - 140	120

Method: ME-(AU)-[ENV]AN433

Method: ME-(AU)-[ENV]AN403

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB110965.002	Monocyclic	Benzene	μg/L	0.5	50	45.45	60 - 140	109
	Aromatic	Toluene	μg/L	0.5	50	45.45	60 - 140	109
		Ethylbenzene	μg/L	0.5	50	45.45	60 - 140	110
		m/p-xylene	μg/L	1	100	90.9	60 - 140	110
		o-xylene	μg/L	0.5	50	45.45	60 - 140	109
	Surrogates	Dibromofluoromethane (Surrogate)	ua/L	-	5.1	5	60 - 140	103

VOCs in Water

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (con	tinued)					I	Nethod: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB110965.002	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.9	5	60 - 140	98
		d8-toluene (Surrogate)	µg/L	-	4.9	5	60 - 140	99
		Bromofluorobenzene (Surrogate)	μg/L	-	4.6	5	60 - 140	92
Volatile Petroleum H	lydrocarbons in V	Vater				N	dethod: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB110965.002		TRH C6-C10	µg/L	50	940	946.63	60 - 140	100
		TRH C6-C9	µg/L	40	770	818.71	60 - 140	94
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.8	5	60 - 140	96
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.1	5	60 - 140	102
		d8-toluene (Surrogate)	µg/L	-	5.0	5	60 - 140	99
		Bromofluorobenzene (Surrogate)	µg/L	-	5.2	5	60 - 140	104
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	640	639.67	60 - 140	100

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	d) in Water				Met	hod: ME-(AU)-	[ENV]AN311	1(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE157659.001	LB111204.004	Mercury	mg/L	0.0001	0.0069	<0.0001	0.008	86

Total Phenolics in Water

Total Phenolics in	Water					Met	hod: ME-(Al	J)-[ENV]AN289
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE157687.002	LB111042.010	Total Phenols	mg/L	0.01	0.24	0.01363	0.25	92

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Di	ssolved) in Water by ICPMS					Meth	od: ME-(AU	J)-[ENV]AN318
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE157659.001	LB111038.004	Arsenic, As	μg/L	1	22	<1	20	110
		Cadmium, Cd	μg/L	0.1	24	1.3	20	112
		Chromium, Cr	μg/L	1	22	<1	20	111
		Copper, Cu	μg/L	1	24	4	20	104
		Lead, Pb	μg/L	1	22	<1	20	110
		Nickel, Ni	μg/L	1	39	20	20	94
		Zinc, Zn	μg/L	5	83	67	20	82

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

SGS					CI	HAIN C	OF C	US	τοι	DY 8	& ANA	LYS	SIS R	REQUEST				Page 1	of 1	
SGS Environmental S	ervices	Cor	npany	Name	e: SN	MEC				1			Proje	ect Name/No:	3002	2523 – Can	nberra Brickworks			
Unit 16, 33 Maddox St		452	Iress:			uite 2, Leve	1, 243	North	bourn	e Ave	enue, Lyneh	am,		hase Order No:						
Alexandria NSW 2015					AC	CT, 2602, A	ustralia	a		1			- Resu	ults Required By:	Rya	n O'Leary				
Telephone No: (02) 85	940400				-								- Telep	phone:	+61	2 6234 196	3 / 0400 240 0	023		
Facsimile No: (02) 85		Cor	ntact N	ame:	Ry	an O'Leary	,						- Facs	imile:	-					
Email: au.samplereceipt.sy		n								1			_ Emai	il Results:	Ryar	n.O'Leary@	smec.com; Gra	ham.Ohm	sen@smec.co	om
Client Sample ID	Date Sampled	Lab Samp ID			30IL	NO OF CONTAINERS	BTEXN	OPPs	OCPs	PAHs/Phenols	8H Metals - As, Cd, Cr, Cu, Ni, Pb, Zn , Hg	трн/ткн							Comment	
M4	17/10/16	1	1			5	\checkmark	V	V	V	V	\checkmark		,	SGS F	HS Alexa	ndria Laboral	torv		
M5	17/10/16	2	-			5	\checkmark	V	$\overline{\mathbf{v}}$	V	1	V						,		
M6	17/9/16		-			5	$\overline{\mathbf{v}}$	V			V	$\overline{\mathbf{v}}$						-		
		3																		
M7	17/10/16	4	~		8	5	\checkmark	V	V	\checkmark	√	V			SE1	58210) COC			
															Recei	ved: 19-	0ct – 2016			
																		1		
Relinquished By: Ryan O	'Leary /////	m	Date	/Time	: 18/10	0/2016 10:	00				Received I	3y:	D	Jubn	1	Date/Time	19/10/	16 @	11.20	
Relinquished By:		1	Date	/Time	:						Received I	By:		, 4		Date/Time		. F C		
Samples Intact: Yes/ No			Tem	perati	ure: A	Ambient / C	hilled				Sample Co	oler S	Sealed:	: Yes/ No		Laborator	Quotation N	o:		
						PERSGS	\bigcirc	E NUM	/BER		•			ASE (5 DAY)						
						-IS DATE								,						
						Iter metals														
			disse		1220	ner metals		spon												

SAMPLE RECEIPT ADVICE

- CLIENT DETAIL	S	LABORATORY DETA	NILS
Contact	Ryan O'Leary	Manager	Huong Crawford
Client	SMEC AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Sun Micro Building Suite 2, Level 1 243 Northbourne Avenue ACT 2602	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 6234 1963	Telephone	+61 2 8594 0400
Facsimile	02 6234 1966	Facsimile	+61 2 8594 0499
Email	Ryan.O'Leary@smec.com	Email	au.environmental.sydney@sgs.com
Project	3002523 - Canberra Brickworks	Samples Received	Wed 19/10/2016
Order Number	SY1-60413-2-IS	Report Due	Wed 26/10/2016
Samples	4	SGS Reference	SE158210

_ SUBMISSION DETAILS

This is to confirm that 4 samples were received on Wednesday 19/10/2016. Results are expected to be ready by Wednesday 26/10/2016. Please quote SGS reference SE158210 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 4 Water 19/10/2016 Yes SGS Yes Ice Bricks Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled Number of eskies/boxes received COC Yes 17.3°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

- CLIENT DETAILS -

Client SMEC AUSTRALIA PTY LTD

Project 3002523 - Canberra Brickworks

JMMARY	OF ANALYSIS								
No.	Sample ID	OC Pesticides in Water	OP Pesticides in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Total Phenolics in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	M4	28	13	22	1	7	9	12	8
002	M5	28	13	22	1	7	9	12	8
003	M6	28	13	22	1	7	9	12	8
004	M7	28	13	22	1	7	9	12	8

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client SMEC AUSTRALIA PTY LTD

- SUMMARY OF ANALYSIS -

Project 3002523 - Canberra Brickworks

No.	Sample ID	Mercury (dissolved) in Water
001	M4	1
002	M5	1
003	M6	1
004	М7	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

IENT DETAILS	·	LABORATORY DE	TAILS
Contact	Ryan O'Leary	Manager	Huong Crawford
Client	SMEC AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Address	Sun Micro Building Suite 2, Level 1 243 Northbourne Avenue ACT 2602	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 6234 1963	Telephone	+61 2 8594 0400
Facsimile	02 6234 1966	Facsimile	+61 2 8594 0499
Email	Ryan.O'Leary@smec.com	Email	au.environmental.sydney@sgs.com
Project	3002523 - Canberra Brickworks	SGS Reference	SE158210 R0
Order Number	SY1-60413-2-IS	Date Received	19/10/2016
Samples	4	Date Reported	26/10/2016

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Kinty

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Dong Liang

Metals/Inorganics Team Leader

Alexandria NSW 2015

Alexandria NSW 2015

t +61 2 8594 0400 Australia f +61 2 8594 0499 Australia

Kamrul Ahsan

Senior Chemist

www.sgs.com.au

ANALYTICAL RESULTS

VOCs in Water [AN433] Tested: 20/10/2016

			M4	M5	M6	M7
			WATER	WATER	WATER	WATER
			-	-	-	-
PARAMETER	UOM	LOR	17/10/2016 SE158210.001	17/10/2016 SE158210.002	17/10/2016 SE158210.003	17/10/2016 SE158210.004
Benzene	µg/L	0.5	<0.5	<0.5	<0.5	1.1
Toluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3	<3	<3
Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 20/10/2016

			M4	M5	M6	M7
			WATER	WATER	WATER	WATER
			17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158210.001	SE158210.002	SE158210.003	SE158210.004
TRH C6-C9	µg/L	40	<40	<40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	1.1
TRH C6-C10	µg/L	50	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 20/10/2016

			M4	M5	M6	M7
			WATER	WATER	WATER	WATER
			17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158210.001	SE158210.002	SE158210.003	SE158210.004
TRH C10-C14	µg/L	50	<50	<50	<50	<50
TRH C15-C28	µg/L	200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200
TRH >C10-C16 (F2)	µg/L	60	<60	<60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500
TRH C10-C36	µg/L	450	<450	<450	<450	<450
TRH C10-C40	µg/L	650	<650	<650	<650	<650

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 20/10/2016

			M4	M5	M6	M7
			WATER	WATER	WATER	WATER
			-	-	-	-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158210.001	SE158210.002	SE158210.003	SE158210.004
Naphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Total PAH (18)	µg/L	1	<1	<1	<1	<1

OC Pesticides in Water [AN400/AN420] Tested: 20/10/2016

			M4	M5	M6	М7
			WATER - 17/10/2016	WATER - 17/10/2016	WATER - 17/10/2016	WATER - 17/10/2016
PARAMETER	UOM	LOR	SE158210.001	SE158210.002	SE158210.003	SE158210.004
Hexachlorobenzene (HCB)	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Gamma Chlordane	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Endrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	µg/L	0.1	<0.1	<0.1	<0.1	<0.1

OP Pesticides in Water [AN400/AN420] Tested: 20/10/2016

			M4	M5	M6	M7
			WATER -	WATER -	WATER -	WATER -
PARAMETER	UOM	LOR	17/10/2016 SE158210.001	17/10/2016 SE158210.002	17/10/2016 SE158210.003	17/10/2016 SE158210.004
Dichlorvos	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	µg/L	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	µg/L	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	µg/L	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	µg/L	0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Ethion	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl	μg/L	0.2	<0.2	<0.2	<0.2	<0.2

Total Phenolics in Water [AN289] Tested: 24/10/2016

			M4	M5	M6	M7
			WATER	WATER	WATER	WATER
						-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158210.001	SE158210.002	SE158210.003	SE158210.004
Total Phenols	mg/L	0.01	<0.01	<0.01	<0.01	<0.01

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 20/10/2016

			M4	M5	M6	M7
			WATER	WATER	WATER	WATER
			- 17/10/2016	- 17/10/2016	- 17/10/2016	- 17/10/2016
PARAMETER	UOM	LOR	SE158210.001	SE158210.002	SE158210.003	SE158210.004
Arsenic, As	µg/L	1	<1	<1	<1	<1
Cadmium, Cd	µg/L	0.1	<0.1	<0.1	0.2	0.2
Chromium, Cr	µg/L	1	<1	<1	<1	<1
Copper, Cu	µg/L	1	1	2	1	1
Lead, Pb	µg/L	1	<1	<1	<1	<1
Nickel, Ni	µg/L	1	2	1	13	12
Zinc, Zn	µg/L	5	<5	<5	18	8

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 25/10/2016

			M4	M5	M6	M7
			WATER	WATER	WATER	WATER
						-
			17/10/2016	17/10/2016	17/10/2016	17/10/2016
PARAMETER	UOM	LOR	SE158210.001	SE158210.002	SE158210.003	SE158210.004
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is not corrected for Naphthalene.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS /ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.

Not analysed. NVL Not validated. IS LNR

Insufficient sample for analysis. Sample listed, but not received.

UOM LOR î↓

Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-OU-02 20Plan pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sqs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

Ryan O'Leary		
	Manager	Huong Crawford
SMEC AUSTRALIA PTY LTD	Laboratory	SGS Alexandria Environmental
Sun Micro Building Suite 2, Level 1 243 Northbourne Avenue ACT 2602	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
02 6234 1963	Telephone	+61 2 8594 0400
02 6234 1966	Facsimile	+61 2 8594 0499
Ryan.O'Leary@smec.com	Email	au.environmental.sydney@sgs.com
3002523 - Canberra Brickworks	SGS Reference	SE158210 R0
SY1-60413-2-IS	Date Received	19 Oct 2016
4	Date Reported	26 Oct 2016
	243 Northbourne Avenue ACT 2602 02 6234 1963 02 6234 1966 Ryan.O'Leary@smec.com 3002523 - Canberra Brickworks SY1-60413-2-IS	243 Northbourne Avenue ACT 260202 6234 1963Telephone02 6234 1966FacsimileRyan.O'Leary@smec.comEmail3002523 - Canberra Brickworks SY1-60413-2-ISSGS Reference Date Received

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Wat	er						Method: ME-(AU)-[ENV	JAN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M4	SE158210.001	LB112338	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	25 Oct 2016
M5	SE158210.002	LB112338	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	25 Oct 2016
M6	SE158210.003	LB112338	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	25 Oct 2016
M7	SE158210.004	LB112338	17 Oct 2016	19 Oct 2016	14 Nov 2016	25 Oct 2016	14 Nov 2016	25 Oct 2016
OC Pesticides in Water							Method: ME-(AL	J)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Boosived	Extraction Due	Extracted		
	Sample No.		Sampled	Received	Extraction Due		Analysis Due	Analysed
M4	SE158210.001	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	26 Oct 2016
M5	SE158210.002	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	26 Oct 2016
M6	SE158210.003	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	26 Oct 2016
M7	SE158210.004	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	26 Oct 2016
OP Pesticides in Water							Method: ME-(AL	J)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M4	SE158210.001	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	25 Oct 2016
M5	SE158210.002	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	25 Oct 2016
M6	SE158210.003	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	25 Oct 2016
M7	SE158210.004	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	25 Oct 2016
PAH (Polynuclear Aromatic	c Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M4	SE158210.001	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	25 Oct 2016
M5	SE158210.002	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	25 Oct 2016
M6	SE158210.003	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	25 Oct 2016
M7	SE158210.004	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	25 Oct 2016
Total Phenolics in Water							Method:	ME-(AU)-[ENV]AN289
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M4	SE158210.001	LB112243	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	24 Oct 2016
M5	SE158210.002	LB112243	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	24 Oct 2016
M6	SE158210.003	LB112243	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	24 Oct 2016
M7	SE158210.004	LB112243	17 Oct 2016	19 Oct 2016	14 Nov 2016	24 Oct 2016	14 Nov 2016	24 Oct 2016
Trace Metals (Dissolved) ir								ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M4	Sample NO. SE158210.001	LB112043	17 Oct 2016	19 Oct 2016	15 Apr 2017	20 Oct 2016	15 Apr 2017	21 Oct 2016
							· · · · · · · · · · · · · · · · · · ·	
M5 M6	SE158210.002	LB112043	17 Oct 2016 17 Oct 2016	19 Oct 2016	15 Apr 2017 15 Apr 2017	20 Oct 2016	15 Apr 2017 15 Apr 2017	21 Oct 2016
M7	SE158210.003 SE158210.004	LB112043 LB112043	17 Oct 2016	19 Oct 2016 19 Oct 2016	15 Apr 2017	20 Oct 2016 20 Oct 2016	15 Apr 2017	21 Oct 2016 21 Oct 2016
		LB112045	17 Oct 2010	19 001 2010	15 Apr 2017	20 Oct 2010	· · · · · · · · · · · · · · · · · · ·	
TRH (Total Recoverable H								ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M4	SE158210.001	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	25 Oct 2016
M5	SE158210.002	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	25 Oct 2016
M6	SE158210.003	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	25 Oct 2016
M7	SE158210.004	LB112045	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	25 Oct 2016
VOCs in Water							Method:	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M4	SE158210.001	LB112089	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	26 Oct 2016
M5	SE158210.002	LB112089	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	26 Oct 2016
M6	SE158210.003	LB112089	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	26 Oct 2016
M7	SE158210.004	LB112089	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	26 Oct 2016
Volatile Petroleum Hydroca	arbons in Water						Method:	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
M4	SE158210.001	LB112089	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	26 Oct 2016
M5	SE158210.002	LB112089	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	26 Oct 2016
M6	SE158210.003	LB112089	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	26 Oct 2016
M7	SE158210.004	LB112089	17 Oct 2016	19 Oct 2016	24 Oct 2016	20 Oct 2016	29 Nov 2016	26 Oct 2016

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Water Method: ME-(AU)-[ENV]AN400/AN420 Parameter Criteria Recovery % Sample Num Sam Units Tetrachloro-m-xylene (TCMX) (Surrogate) M4 SE158210.001 % 40 - 130% 56 M5 SE158210.002 % 40 - 130% 51 M6 SE158210.003 40 - 130% % 52 М7 SE158210.004 % 40 - 130% 55 **OP Pesticides in Water** Method: ME-(AU)-[ENV]AN400/AN420 Parameter Recovery % Sample Na Sample Num Units Criteria 2-fluorobiphenyl (Surrogate) M4 SE158210.001 % 40 - 130% 54 M5 SE158210.002 % 40 - 130% 64 M6 SE158210.003 40 - 130% 62 % M7 SE158210.004 % 40 - 130% 68 d14-p-terphenyl (Surrogate) M4 SE158210.001 40 - 130% 102 % M5 SE158210.002 40 - 130% 98 % SE158210.003 40 - 130% M6 % 102 Μ7 SE158210.004 % 40 - 130% 74 PAH (Polynuclear Aromatic Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN420 Parameter Same Sample Numb Criteria Recovery % 2-fluorobiphenyl (Surrogate) M4 SE158210.001 % 40 - 130% 54 M5 SE158210.002 % 40 - 130% 64 M6 SE158210.003 % 40 - 130% 62 M7 SE158210.004 % 40 - 130% 68 d14-p-terphenyl (Surrogate) M4 SE158210.001 % 40 - 130% 102 M5 SE158210.002 40 - 130% % 98 M6 SE158210.003 % 40 - 130% 102 Μ7 SE158210.004 % 40 - 130% 74 M4 SE158210.001 40 - 130% 44 d5-nitrobenzene (Surrogate) % M5 SE158210.002 % 40 - 130% 54 M6 SE158210.003 40 - 130% 54 % М7 SE158210.004 % 40 - 130% 54 Method: ME-(AU)-[ENV]AN433 VOCs in Water Recovery % Parameter Sample Name Sample Numb Units Criteria Bromofluorobenzene (Surrogate) SE158210.001 40 - 130% M4 % 90 400

	M5	SE158210.002	%	40 - 130%	91
	M6	SE158210.003	%	40 - 130%	91
	M7	SE158210.004	%	40 - 130%	93
d4-1,2-dichloroethane (Surrogate)	M4	SE158210.001	%	40 - 130%	114
	М5	SE158210.002	%	40 - 130%	110
	M6	SE158210.003	%	40 - 130%	102
	M7	SE158210.004	%	40 - 130%	104
d8-toluene (Surrogate)	<u>M4</u>	SE158210.001	%	40 - 130%	90
	M5	SE158210.002	%	40 - 130%	91
	M6	SE158210.003	%	40 - 130%	86
	М7	SE158210.004	%	40 - 130%	76
Dibromofluoromethane (Surrogate)	M4	SE158210.001	%	40 - 130%	116
	М5	SE158210.002	%	40 - 130%	114
	M6	SE158210.003	%	40 - 130%	111
	М7	SE158210.004	%	40 - 130%	108

Volatile Petroleum Hydrocarbons in Water

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	M4	SE158210.001	%	40 - 130%	90
	M5	SE158210.002	%	40 - 130%	91
	M6	SE158210.003	%	40 - 130%	91
	M7	SE158210.004	%	40 - 130%	93
d4-1,2-dichloroethane (Surrogate)	M4	SE158210.001	%	60 - 130%	114
	M5	SE158210.002	%	60 - 130%	110
	M6	SE158210.003	%	60 - 130%	102
	M7	SE158210.004	%	60 - 130%	104
d8-toluene (Surrogate)	M4	SE158210.001	%	40 - 130%	90
	M5	SE158210.002	%	40 - 130%	91
	M6	SE158210.003	%	40 - 130%	86

Method: ME-(AU)-[ENV]AN433

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Water (continued)					E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	M7	SE158210.004	%	40 - 130%	76
Dibromofluoromethane (Surrogate)	M4	SE158210.001	%	40 - 130%	116
	M5	SE158210.002	%	40 - 130%	114
	M6	SE158210.003	%	40 - 130%	111
	M7	SE158210.004	%	40 - 130%	108

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	NVJAN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB112338.001	Mercury	mg/L	0.0001	<0.0001

OC Pesticides in Water

DC Pesticides in Water				-(AU)-[ENV]AN400/A
Sample Number	Parameter	Units	LOR	Result
B112045.001	Hexachlorobenzene (HCB)	µg/L	0.1	<0.1
	Alpha BHC	µg/L	0.1	<0.1
	Lindane (gamma BHC)	μg/L	0.1	<0.1
	Heptachlor	µg/L	0.1	<0.1
	Aldrin	μg/L	0.1	<0.1
	Beta BHC	μg/L	0.1	<0.1
	Delta BHC	μg/L	0.1	<0.1
	Heptachlor epoxide	μg/L	0.1	<0.1
	Alpha Endosulfan	μg/L	0.1	<0.1
	Gamma Chlordane	μg/L	0.1	<0.1
	Alpha Chlordane	µg/L	0.1	<0.1
	p,p'-DDE	µg/L	0.1	<0.1
	Dieldrin	µg/L	0.1	<0.1
	Endrin	µg/L	0.1	<0.1
	Beta Endosulfan	µg/L	0.1	<0.1
	p,p'-DDD	µg/L	0.1	<0.1
	p,p'-DDT	µg/L	0.1	<0.1
	Endosulfan sulphate	µg/L	0.1	<0.1
	Endrin aldehyde	µg/L	0.1	<0.1
	Methoxychlor	µg/L	0.1	<0.1
	Endrin ketone	µg/L	0.1	<0.1
	Isodrin	µg/L	0.1	<0.1
	Mirex	µg/L	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	74
P Pesticides in Water			Method: ME	-(AU)-[ENV]AN400/A
ample Number	Parameter	Units	LOR	Result
3112045.001	Dichlorvos	µg/L	0.5	<0.5
	Dimethoate	µg/L	0.5	<0.5
	Diazinon (Dimpylate)	µg/L	0.5	<0.5
	Fenitrothion	μg/L	0.2	<0.2
	Malathion	μg/L	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	<0.2
	Parathion-ethyl (Parathion)	μg/L	0.2	<0.2
	Bromophos Ethyl	μg/L	0.2	<0.2
	Methidathion	μg/L	0.5	<0.5
	Ethion	μg/L	0.2	<0.2
	Azinphos-methyl	μg/L	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	pgr%	-	68
	d14-p-terphenyl (Surrogate)	%	-	96
AH (Polynuclear Aromatic Hydrocarbons) in				od: ME-(AU)-[ENV]A
and a share a second second and and a second of the			Inour	and the former of the state in the state of

				· · · · ·
Sample Number	Parameter	Units	LOR	Result
LB112045.001	Naphthalene	μg/L	0.1	<0.1
	2-methylnaphthalene	μg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	μg/L	0.1	<0.1
	Fluorene	μg/L	0.1	<0.1
	Phenanthrene	µg/L	0.1	<0.1
	Anthracene	μg/L	0.1	<0.1
	Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1
	Benzo(a)anthracene	µg/L	0.1	<0.1
	Chrysene	µg/L	0.1	<0.1
	Benzo(a)pyrene	µg/L	0.1	<0.1

METHOD BLANKS

SE158210 R0

Method: ME-(AU)-[ENV]AN420

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Water (continued)

Sample Number	Parameter	Units	LOR	Result
LB112045.001	Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
	Dibenzo(ah)anthracene	μg/L	0.1	<0.1
	Benzo(ghi)perylene	μg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	96
	2-fluorobiphenyl (Surrogate)	%	-	84
	d14-p-terphenyl (Surrogate)	%	-	114
Total Phenolics in Water			Metho	od: ME-(AU)-[ENV]AN28
Sample Number	Parameter	Units	LOR	Result
LB112243.001	Total Phenols	mg/L	0.01	<0.01

Trace Metals (Dissolve	ed) in Water by ICPMS			Meth	od: ME-(AU)-[ENV]AN31
Sample Number		Parameter	Units	LOR	Result
LB112043.001		Arsenic, As	µg/L	1	<1
		Cadmium, Cd	µg/L	0.1	<0.1
		Chromium, Cr	µg/L	1	<1
		Copper, Cu	μg/L	1	<1
		Lead, Pb	μg/L	1	<1
		Nickel, Ni	μg/L	1	<1
		Zinc, Zn	μg/L	5	<5
TRH (Total Recoverabl	le Hydrocarbons) in Water			Meth	od: ME-(AU)-[ENV]AN40
Sample Number		Parameter	Units	LOR	Result
LB112045.001		TRH C10-C14	µg/L	50	<50
		TRH C15-C28	µg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	μg/L	200	<200
VOCs in Water				Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB112089.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	µg/L	0.5	<0.5
		m/p-xylene	µg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	µg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	106
		d4-1,2-dichloroethane (Surrogate)	%	-	106
		d8-toluene (Surrogate)	%	-	101
		Bromofluorobenzene (Surrogate)	%	-	97
Volatile Petroleum Hyd	Irocarbons in Water			Meth	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB112089.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	106
		d4-1,2-dichloroethane (Surrogate)	%	-	106
		d8-toluene (Surrogate)	%	-	101
		Bromofluorobenzene (Surrogate)	%	-	97

Method: ME-(AU)-IENVIAN289

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water				Metho	d: ME-(AU)-[ENVJAN311(P	Perth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158209.001	LB112338.014	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0

Total Phenolics in Water

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158210.001	LB112243.004	Total Phenols	mg/L	0.01	<0.01	<0.01	200	0

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Diss	solved) in Water by ICPMS					Meth	od: ME-(AU)-	[ENV]AN318
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE158225.001	LB112043.009	Arsenic, As	µg/L	1	2	2	59	2
		Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
		Chromium, Cr	μg/L	1	2	2	58	1
		Copper, Cu	μg/L	1	2	2	79	2
		Lead, Pb	μg/L	1	2	2	64	3
		Nickel, Ni	µg/L	1	2	2	58	0
		Zinc, Zn	μg/L	5	9	8	75	14

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

OC Pesticides in W	/ater					Method:	ME-(AU)-[EN\	7AN400/AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
LB112045.002		Heptachlor	µg/L	0.1	0.2	0.2	60 - 140	109
		Aldrin	μg/L	0.1	0.2	0.2	60 - 140	100
		Delta BHC	μg/L	0.1	0.2	0.2	60 - 140	112
		Dieldrin	μg/L	0.1	0.2	0.2	60 - 140	104
		Endrin	μg/L	0.1	0.2	0.2	60 - 140	102
		p,p'-DDT	μg/L	0.1	0.2	0.2	60 - 140	123
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	µg/L	-	0.12	0.15	40 - 130	77
P Pesticides in W	/ater					Method:	ME-(AU)-[EN\	JAN400/AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB112045.002		Dichlorvos	μg/L	0.5	7.0	8	60 - 140	88
		Diazinon (Dimpylate)	μg/L	0.5	6.7	8	60 - 140	83
		Chlorpyrifos (Chlorpyrifos Ethyl)	µg/L	0.2	7.1	8	60 - 140	89
		Ethion	μg/L	0.2	6.4	8	60 - 140	80
	Surrogates	2-fluorobiphenyl (Surrogate)	μg/L	-	0.3	0.5	40 - 130	66
		d14-p-terphenyl (Surrogate)	μg/L	-	0.5	0.5	40 - 130	106
PAH (Polynuclear /	Aromatic Hydroca	arbons) in Water				1	Method: ME-(A	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB112045.002		Naphthalene	µg/L	0.1	28	40	60 - 140	70
		Acenaphthylene	µg/L	0.1	32	40	60 - 140	79
		Acenaphthene	µg/L	0.1	29	40	60 - 140	74
		Phenanthrene	µg/L	0.1	33	40	60 - 140	82
		Anthracene	µg/L	0.1	40	40	60 - 140	100
		Fluoranthene	µg/L	0.1	35	40	60 - 140	88
		Pyrene	µg/L	0.1	45	40	60 - 140	112
		Benzo(a)pyrene	µg/L	0.1	36	40	60 - 140	89
	Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.5	0.5	40 - 130	106
		2-fluorobiphenyl (Surrogate)	µg/L	-	0.3	0.5	40 - 130	64
		d14-p-terphenyl (Surrogate)	μg/L	-	0.4	0.5	40 - 130	88
otal Phenolics in \	Nater					1	Method: ME-(A	J)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB112243.002		Total Phenols	mg/L	0.01	0.23	0.25	80 - 120	93

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dissolved) in Wa	ater by ICPMS				1	Nethod: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112043.002	Arsenic, As	μg/L	1	20	20	80 - 120	102
	Cadmium, Cd	μg/L	0.1	21	20	80 - 120	104
	Chromium, Cr	μg/L	1	21	20	80 - 120	107
	Copper, Cu	μg/L	1	22	20	80 - 120	109
	Lead, Pb	μg/L	1	22	20	80 - 120	109
	Nickel, Ni	μg/L	1	21	20	80 - 120	106
	Zinc, Zn	µg/L	5	21	20	80 - 120	107

TRH (Total Recoverable Hydrocarbons) in Water

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112045.002		TRH C10-C14	µg/L	50	940	1200	60 - 140	78
		TRH C15-C28	µg/L	200	1200	1200	60 - 140	102
		TRH C29-C36	µg/L	200	1300	1200	60 - 140	111
	TRH F Bands	TRH >C10-C16 (F2)	µg/L	60	1100	1200	60 - 140	90
		TRH >C16-C34 (F3)	µg/L	500	1300	1200	60 - 140	109
		TRH >C34-C40 (F4)	µg/L	500	690	600	60 - 140	115

Method: ME-(AU)-[ENV]AN433

Method: ME-(AU)-[ENV]AN403

Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112089.002	Monocyclic	Benzene	μg/L	0.5	50	45.45	60 - 140	111
	Aromatic	Toluene	μg/L	0.5	50	45.45	60 - 140	111
		Ethylbenzene	μg/L	0.5	51	45.45	60 - 140	112
		m/p-xylene	μg/L	1	100	90.9	60 - 140	111
		o-xylene	μg/L	0.5	51	45.45	60 - 140	112
	Surrogates	Dibromofluoromethane (Surrogate)	ua/L	-	4.6	5	60 - 140	92

VOCs in Water

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (cor	ntinued)					N	lethod: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112089.002	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.5	5	60 - 140	90
		d8-toluene (Surrogate)	µg/L	-	4.7	5	60 - 140	94
		Bromofluorobenzene (Surrogate)	µg/L	-	5.0	5	60 - 140	101
Volatile Petroleum I	-lydrocarbons in \	Vater				N	lethod: ME-(A	U)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB112089.002		TRH C6-C10	µg/L	50	930	946.63	60 - 140	98
		TRH C6-C9	µg/L	40	750	818.71	60 - 140	91
	Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.6	5	60 - 140	92
		d4-1,2-dichloroethane (Surrogate)	µg/L	-	4.5	5	60 - 140	90
		d8-toluene (Surrogate)	µg/L	-	4.7	5	60 - 140	94
		Bromofluorobenzene (Surrogate)	µg/L	-	5.0	5	60 - 140	101
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	620	639.67	60 - 140	97

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	d) in Water				Met	thod: ME-(AU)-	[ENV]AN311	1(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE158209.002	LB112338.016	Mercury	mg/L	0.0001	0.0080	<0.0001	0.008	100

Total Phenolics in Water

Total Phenolics in	Water					Met	hod: ME-(Al	J)-[ENV]AN289
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE158199.001	LB112243.010	Total Phenols	mg/L	0.01	0.23	0.01	0.25	89

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Dis	solved) in Water by ICPMS			Method: ME-(AU)-[ENV]AN318				
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE158210.001	LB112043.004	Arsenic, As	μg/L	1	22	<1	20	110
		Cadmium, Cd	μg/L	0.1	21	<0.1	20	105
		Chromium, Cr	μg/L	1	22	<1	20	107
		Copper, Cu	μg/L	1	22	1	20	103
		Lead, Pb	μg/L	1	21	<1	20	106
		Nickel, Ni	μg/L	1	22	2	20	102
		Zinc, Zn	μg/L	5	22	<5	20	102

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

Ref: COC_29092016.doc/ver.2/16.08.2007/Page 1 of 1

Uncontrolled
template v
vhen printed

	CHAIN OF CUSTODY & ANALYSIS REQUEST	'SIS REQUEST Page 1 of 1
SGS Environmental Services	Company Name: SMEC	Project Name/No: 3002533 _ Conform Balance
Unit 16, 33 Maddox Street	Address: Suite 2, Level 1, 243 Northbourne Avenue, Lyneham,	Purchase Order No:
Alexandria NSW 2015	ACT, 2602, Australia	Results Required By: Ryan O'Leary
Facsimile No: (02) 85940400		
	Contract Native Ryan O Leary	Facsimile:
1003928/andianalianaliana		Email Results: Ryan.O'Learv@smec.com
lient Sample ID Sampled	WATER SOIL NO OF CONTAINE BTEXN OPPs OCPs PAHs/Phenois 8H Metals - s. Cd, Cr, Cu, Ni, Pb Hg TPH/TRH	Environmental Division Sydney Work Order Reference
	< 4	
M3 28/9/2016		
QC22 28/9/2016		
① QC23 28/9/2016		Telephone : + 61-2-8784 8555
Relinquished By: Ryan O'Leary 🥢 /////	Date/Time: 29/9/2016 16:00 Received By:	
Kelinquished By:	1	DatoTimo
Samples Intact: Yes/ No	Sample	Cooler Sealed: Yes/ No Laboratory Quotation No:
	SM1 - 60413 - 24'S DATED 13TH APRIL 2018	ARD TAT PLEASE (5 DAY)
	dissolved	Ś
		15620123

а. ,

.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES1622123		
Client Contact Address	: SMEC AUSTRALIA PTY LTD : RYAN O'LEARY : P O BOX 1654 FYSHWICK ACT, AUSTRALIA 2609	Laboratory Contact Address	 Environmental Division Sydney 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail Telephone Facsimile	: ryan.o'leary@smec.com : +61 02 9925 5555 : +61 02 9925 5566	E-mail Telephone Facsimile	: : +61-2-8784 8555 : +61-2-8784 8500
Project Order number C-O-C number Site	: 3002523 - CANBERRA BRICKWORKS : : :	Page Quote number QC Level	: 1 of 2 : ES2015SMEAUS0024 (EN/025/15) : NEPM 2013 B3 & ALS QC Standard

Sampler

Date Samples Received Client Requested Due Date	: 30-Sep-2016 3:50 PM : 10-Oct-2016	Issue Date Scheduled Reporting Date	: 04-Oct-2016 : 10-Oct-2016
Delivery Details			
Mode of Delivery	: Undefined	Security Seal	: Not intact.
No. of coolers/boxes	:	Temperature	: 1.0' C - Ice Bricks present
Receipt Detail	:	No. of samples received / analysed	: 1/1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
 recommended holding times that have occurred prior to samples/instructions being received at
 the laboratory. The absence of this summary table indicates that all samples have been received
 within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default to 15:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory for processing purposes and will be shown bracketed without a time component.

Matrix: WATER

•	r processing purpo	te will be assumed by ses and will be shown	5G Discrete An	es	AH/8 Metals
Matrix: WATER			R - EP03 henol by	R - W-12 Pesticid	R - W-26 TEXN/P/
Laboratory sample ID	Client sampling date / time	Client sample ID	ATE otal F	ATE C/OF	ATE RH/B
			S F	≤ 0	≤ ⊢
ES1622123-001	[28-Sep-2016]	QC23	 ✓ 	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

RYAN O'LEARY

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental HT (SRN)
- A4 AU Tax Invoice (INV)
- Chain of Custody (CoC) (COC)
- EDI Format ESDAT (ESDAT)

Email Email Email Email Email Email Email

ol by Discrete Analyser

ryan.o'leary@smec.com ryan.o'leary@smec.com ryan.o'leary@smec.com ryan.o'leary@smec.com ryan.o'leary@smec.com ryan.o'leary@smec.com ryan.o'leary@smec.com

CERTIFICATE OF ANALYSIS

Work Order	ES1622123	Page	: 1 of 7
Client	SMEC AUSTRALIA PTY LTD	Laboratory	Environmental Division Sydney
Contact	: RYAN O'LEARY	Contact	:
Address	: P O BOX 1654	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	FYSHWICK ACT, AUSTRALIA 2609		
Telephone	: +61 02 9925 5555	Telephone	: +61-2-8784 8555
Project	: 3002523 - CANBERRA BRICKWORKS	Date Samples Received	: 30-Sep-2016 15:50
Order number	:	Date Analysis Commenced	: 04-Oct-2016
C-O-C number	:	Issue Date	: 10-Oct-2016 16:08
Sampler	:		IC-MRA NATA
Site	:		
Quote number	:		The Column
No. of samples received	: 1		Accreditation No. 82 Accredited for compliance wit
No. of samples analysed	: 1		ISO/IEC 17025 - Testin

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page : 3 of 7 Work Order : ES1622123 Client : SMEC AUSTRALIA PTY LTD Project : 3002523 - CANBERRA BRICKWORKS

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QC23	 	
	Cl	ient sampli	ng date / time	[28-Sep-2016]	 	
Compound	CAS Number	LOR	Unit	ES1622123-001	 	
				Result	 	
EG020F: Dissolved Metals by ICP-	MS					
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0014	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.005	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	0.020	 	
Zinc	7440-66-6	0.005	mg/L	0.072	 	
EG035F: Dissolved Mercury by FIN	MS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EP035G: Total Phenol by Discrete						
Phenois (Total)		0.05	mg/L	<0.05	 	
EP068A: Organochlorine Pesticide						1
alpha-BHC	319-84-6	0.5	µg/L	<0.5	 	
Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	 	
beta-BHC	319-85-7	0.5	μg/L	<0.5	 	
gamma-BHC	58-89-9	0.5	μg/L	<0.5	 	
delta-BHC	319-86-8	0.5	μg/L	<0.5	 	
Heptachlor	76-44-8	0.5	μg/L	<0.5	 	
Aldrin	309-00-2	0.5	μg/L	<0.5	 	
Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5	 	
trans-Chlordane	5103-74-2	0.5	μg/L	<0.5	 	
alpha-Endosulfan	959-98-8	0.5	μg/L	<0.5	 	
cis-Chlordane		0.5	μg/L	<0.5	 	
Dieldrin	5103-71-9 60-57-1	0.5	μg/L μg/L	<0.5	 	
4.4`-DDE	72-55-9	0.5	μg/L μg/L	<0.5		
4.4 -DDE Endrin		0.5	μg/L μg/L	<0.5	 	
beta-Endosulfan	72-20-8 33213-65-9	0.5	μg/L μg/L	<0.5	 	
4.4`-DDD	72-54-8	0.5	μg/L μg/L	<0.5	 	
Endrin aldehyde		0.5	μg/L μg/L	<0.5	 	
Endosulfan sulfate	7421-93-4	0.5		<0.5	 	
4.4 [°] -DDT	1031-07-8	0.5	μg/L	<2.0	 	
	50-29-3	0.5	μg/L	<2.0	 	
Endrin ketone	53494-70-5		μg/L	<0.5	 	
Methoxychlor	72-43-5	2	μg/L		 	
[^] Total Chlordane (sum)		0.5	µg/L	<0.5	 	

Page : 4 of 7 Work Order : ES1622123 Client : SMEC AUSTRALIA PTY LTD Project : 3002523 - CANBERRA BRICKWORKS

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QC23	 	
	Cli	ient samplii	ng date / time	[28-Sep-2016]	 	
Compound	CAS Number	LOR	Unit	ES1622123-001	 	
				Result	 	
EP068A: Organochlorine Pesticio	des (OC) - Continued					
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.5	µg/L	<0.5	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.5	µg/L	<0.5	 	
EP068B: Organophosphorus Pes	sticides (OP)					
Dichlorvos	62-73-7	0.5	µg/L	<0.5	 	
Demeton-S-methyl	919-86-8	0.5	µg/L	<0.5	 	
Monocrotophos	6923-22-4	2	µg/L	<2.0	 	
Dimethoate	60-51-5	0.5	µg/L	<0.5	 	
Diazinon	333-41-5	0.5	µg/L	<0.5	 	
Chlorpyrifos-methyl	5598-13-0	0.5	µg/L	<0.5	 	
Parathion-methyl	298-00-0	2	µg/L	<2.0	 	
Malathion	121-75-5	0.5	µg/L	<0.5	 	
Fenthion	55-38-9	0.5	µg/L	<0.5	 	
Chlorpyrifos	2921-88-2	0.5	µg/L	<0.5	 	
Parathion	56-38-2	2	µg/L	<2.0	 	
Pirimphos-ethyl	23505-41-1	0.5	µg/L	<0.5	 	
Chlorfenvinphos	470-90-6	0.5	µg/L	<0.5	 	
Bromophos-ethyl	4824-78-6	0.5	µg/L	<0.5	 	
Fenamiphos	22224-92-6	0.5	µg/L	<0.5	 	
Prothiofos	34643-46-4	0.5	µg/L	<0.5	 	
Ethion	563-12-2	0.5	µg/L	<0.5	 	
Carbophenothion	786-19-6	0.5	µg/L	<0.5	 	
Azinphos Methyl	86-50-0	0.5	µg/L	<0.5	 	
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons					
Naphthalene	91-20-3	1	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1	µg/L	<1.0	 	
Acenaphthene	83-32-9	1	µg/L	<1.0	 	
Fluorene	86-73-7	1	µg/L	<1.0	 	
Phenanthrene	85-01-8	1	µg/L	<1.0	 	
Anthracene	120-12-7	1	µg/L	<1.0	 	
Fluoranthene	206-44-0	1	µg/L	<1.0	 	
Pyrene	129-00-0	1	µg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1	µg/L	<1.0	 	
Chrysene	218-01-9	1	µg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1	µg/L	<1.0	 	

Page : 5 of 7 Work Order : ES1622123 Client : SMEC AUSTRALIA PTY LTD Project : 3002523 - CANBERRA BRICKWORKS

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QC23	 	
	CI	ient sampli	ng date / time	[28-Sep-2016]	 	
Compound	CAS Number	LOR	Unit	ES1622123-001	 	
				Result	 	
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont	tinued				
Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	 	
^ Sum of polycyclic aromatic hydrocarbons	;	0.5	µg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	 	
EP080/071: Total Petroleum Hydrocarb	ons					
C6 - C9 Fraction		20	µg/L	<20	 	
C10 - C14 Fraction		50	µg/L	<50	 	
C15 - C28 Fraction		100	µg/L	<100	 	
C29 - C36 Fraction		50	µg/L	<50	 	
^ C10 - C36 Fraction (sum)		50	µg/L	<50	 	
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fractio	าร			
C6 - C10 Fraction	C6_C10	20	µg/L	<20	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	 	
(F1)						
>C10 - C16 Fraction		100	µg/L	<100	 	
>C16 - C34 Fraction		100	µg/L	<100	 	
>C34 - C40 Fraction		100	µg/L	<100	 	
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	 	
^ >C10 - C16 Fraction minus Naphthalene (F2)		100	µg/L	<100	 	
EP080: BTEXN						
Benzene	71-43-2	1	µg/L	<1	 	
Toluene	108-88-3	2	μg/L	<2	 	
Ethylbenzene	100-41-4	2	μg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	 	
ortho-Xylene	95-47-6	2	μg/L	<2	 	
^ Total Xylenes	1330-20-7	2	µg/L	<2	 	
^ Sum of BTEX		1	µg/L	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	 	
EP068S: Organochlorine Pesticide Sur	rogate					
Dibromo-DDE	21655-73-2	0.5	%	113	 	

Page	: 6 of 7
Work Order	: ES1622123
Client	: SMEC AUSTRALIA PTY LTD
Project	· 3002523 - CANBERRA BRICKWORKS

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QC23	 	
	Cli	ent sampli	ng date / time	[28-Sep-2016]	 	
Compound	CAS Number	LOR	Unit	ES1622123-001	 	
				Result	 	
EP068T: Organophosphorus Pestici	de Surrogate					
DEF	78-48-8	0.5	%	117	 	
EP075(SIM)S: Phenolic Compound S	Surrogates					
Phenol-d6	13127-88-3	1	%	25.8	 	
2-Chlorophenol-D4	93951-73-6	1	%	60.6	 	
2.4.6-Tribromophenol	118-79-6	1	%	44.0	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1	%	75.9	 	
Anthracene-d10	1719-06-8	1	%	71.4	 	
4-Terphenyl-d14	1718-51-0	1	%	84.1	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	110	 	
Toluene-D8	2037-26-5	2	%	115	 	
4-Bromofluorobenzene	460-00-4	2	%	111	 	

Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Surrogate	e		
Dibromo-DDE	21655-73-2	30	120
EP068T: Organophosphorus Pesticide Surro	gate		
DEF	78-48-8	27	129
EP075(SIM)S: Phenolic Compound Surrogate	es		
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

QUALITY CONTROL REPORT

Work Order	: ES1622123	Page	: 1 of 7	
Client	SMEC AUSTRALIA PTY LTD	Laboratory	: Environmental Division S	Sydney
Contact	: RYAN O'LEARY	Contact	:	
Address	: P O BOX 1654 FYSHWICK ACT, AUSTRALIA 2609	Address	: 277-289 Woodpark Road	d Smithfield NSW Australia 2164
Telephone	+61 02 9925 5555	Telephone	: +61-2-8784 8555	
Project	: 3002523 - CANBERRA BRICKWORKS	Date Samples Received	: 30-Sep-2016	
Order number	:	Date Analysis Commenced	: 04-Oct-2016	
C-O-C number	:	Issue Date	: 10-Oct-2016	NATA
Sampler	:			Hac-MRA NATA
Site	:			
Quote number	:			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

ub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
G020F: Dissolved	Metals by ICP-MS (QC	Lot: 608766)							
ES1622054-002	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0004	0.0003	34.2	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.001	<0.001	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.023	0.023	0.00	0% - 20%
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.025	0.025	0.00	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.269	0.267	0.924	0% - 20%
ES1622287-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0010	<0.0010	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.010	<0.010	0.00	No Limit
	EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.106	0.117	9.42	0% - 50%	
	EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.010	<0.010	0.00	No Limit	
	EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.010	<0.010	0.00	No Limit	
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.011	<0.010	10.2	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	4.43	4.80	7.92	0% - 20%
G035F: Dissolved	Mercury by FIMS (QC I	Lot: 608765)							
ES1622059-108	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
ES1622054-002	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
P035G: Total Phen	ol by Discrete Analyse	r (QC Lot: 606179)							
EP1609290-001	Anonymous	EP035G: Phenols (Total)		0.05	mg/L	<0.05	<0.05	0.00	No Limit
ES1622162-001	Anonymous	EP035G: Phenols (Total)		0.05	mg/L	<0.05	0.30	143	No Limit
P080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 608112)							
ES1622090-006	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
ES1622090-019	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit

Page	3 of 7
Work Order	: ES1622123
Client	: SMEC AUSTRALIA PTY LTD
Project	: 3002523 - CANBERRA BRICKWORKS

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 608112) - continued							
ES1622090-006	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.00	No Limit
ES1622090-019	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.00	No Limit
EP080: BTEXN (QC	Lot: 608112)								
ES1622090-006	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
	EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit	
	EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit	
		106-42-3							
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit
ES1622090-019	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
	EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit	
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

ub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LCS			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Nethod: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
G020F: Dissolved Metals by ICP-MS (QCLot	t: 608766)							
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	104	85	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	100	84	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	95.8	85	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	97.8	81	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	93.8	83	111
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	92.4	82	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	96.2	81	117
EG035F: Dissolved Mercury by FIMS (QCLot:	: 608765)							
G035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	98.7	83	105
EP035G: Total Phenol by Discrete Analyser (QCLot: 606179)							
P035G: Phenols (Total)		0.05	mg/L	<0.05	0.5 mg/L	85.0	64	98
EP068A: Organochlorine Pesticides (OC)(QC	CLot: 604843)							
P068: alpha-BHC	319-84-6	0.5	μg/L	<0.5	5 µg/L	87.1	65	113
P068: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	5 µg/L	83.6	54	114
EP068: beta-BHC	319-85-7	0.5	μg/L	<0.5	5 µg/L	88.3	69	117
EP068: gamma-BHC	58-89-9	0.5	μg/L	<0.5	5 µg/L	88.4	70	112
EP068: delta-BHC	319-86-8	0.5	μg/L	<0.5	5 µg/L	92.5	67	117
EP068: Heptachlor	76-44-8	0.5	µg/L	<0.5	5 µg/L	88.7	63	113
EP068: Aldrin	309-00-2	0.5	µg/L	<0.5	5 µg/L	93.5	66	116
EP068: Heptachlor epoxide	1024-57-3	0.5	µg/L	<0.5	5 µg/L	97.8	59	123
EP068: trans-Chlordane	5103-74-2	0.5	µg/L	<0.5	5 µg/L	100	61	121
EP068: alpha-Endosulfan	959-98-8	0.5	µg/L	<0.5	5 µg/L	101	66	120
EP068: cis-Chlordane	5103-71-9	0.5	µg/L	<0.5	5 µg/L	100	64	120
EP068: Dieldrin	60-57-1	0.5	µg/L	<0.5	5 µg/L	102	66	120
EP068: 4.4`-DDE	72-55-9	0.5	µg/L	<0.5	5 µg/L	106	67	119
EP068: Endrin	72-20-8	0.5	µg/L	<0.5	5 µg/L	95.1	66	122
EP068: beta-Endosulfan	33213-65-9	0.5	µg/L	<0.5	5 µg/L	104	71	119
EP068: 4.4`-DDD	72-54-8	0.5	µg/L	<0.5	5 µg/L	107	72	122
EP068: Endrin aldehyde	7421-93-4	0.5	µg/L	<0.5	5 µg/L	97.3	64	116
P068: Endosulfan sulfate	1031-07-8	0.5	µg/L	<0.5	5 µg/L	95.4	60	126
EP068: 4.4`-DDT	50-29-3	2	µg/L	<2.0	5 µg/L	82.8	60	122
EP068: Endrin ketone	53494-70-5	0.5	µg/L	<0.5	5 µg/L	97.7	62	124
EP068: Methoxychlor	72-43-5	2	µg/L	<2.0	5 µg/L	89.8	53	127

Page	5 of 7
Work Order	ES1622123
Client	: SMEC AUSTRALIA PTY LTD
Project	: 3002523 - CANBERRA BRICKWORKS

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068B: Organophosphorus Pesticides (OP)	(QCLot: 604843) - continued							
EP068: Dichlorvos	62-73-7	0.5	µg/L	<0.5	5 µg/L	97.4	69	119
EP068: Demeton-S-methyl	919-86-8	0.5	μg/L	<0.5	5 µg/L	97.0	62	124
EP068: Monocrotophos	6923-22-4	2	µg/L	<2.0	5 µg/L	24.5	20	48
EP068: Dimethoate	60-51-5	0.5	µg/L	<0.5	5 µg/L	97.8	65	121
EP068: Diazinon	333-41-5	0.5	µg/L	<0.5	5 µg/L	97.9	70	120
EP068: Chlorpyrifos-methyl	5598-13-0	0.5	µg/L	<0.5	5 µg/L	91.0	77	119
EP068: Parathion-methyl	298-00-0	2	µg/L	<2.0	5 µg/L	86.7	70	124
EP068: Malathion	121-75-5	0.5	µg/L	<0.5	5 µg/L	104	70	124
EP068: Fenthion	55-38-9	0.5	µg/L	<0.5	5 µg/L	101	68	122
EP068: Chlorpyrifos	2921-88-2	0.5	µg/L	<0.5	5 µg/L	103	75	1196
EP068: Parathion	56-38-2	2	µg/L	<2.0	5 µg/L	94.1	67	121
EP068: Pirimphos-ethyl	23505-41-1	0.5	µg/L	<0.5	5 µg/L	104	69	121
EP068: Chlorfenvinphos	470-90-6	0.5	µg/L	<0.5	5 µg/L	99.3	69	119
EP068: Bromophos-ethyl	4824-78-6	0.5	μg/L	<0.5	5 µg/L	103	63	125
EP068: Fenamiphos	22224-92-6	0.5	μg/L	<0.5	5 µg/L	106	69	125
EP068: Prothiofos	34643-46-4	0.5	μg/L	<0.5	5 µg/L	107	61	11123
EP068: Ethion	563-12-2	0.5	µg/L	<0.5	5 µg/L	108	74	120
EP068: Carbophenothion	786-19-6	0.5	μg/L	<0.5	5 µg/L	98.9	68	124
EP068: Azinphos Methyl	86-50-0	0.5	μg/L	<0.5	5 µg/L	90.7	44	130
EP075(SIM)B: Polynuclear Aromatic Hydrocarl	bons (QCLot: 604842)							
EP075(SIM): Naphthalene	91-20-3	1	µg/L	<1.0	5 µg/L	66.0	50	94
EP075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	5 µg/L	70.2	64	114
EP075(SIM): Acenaphthene	83-32-9	1	µg/L	<1.0	5 µg/L	72.2	62	113
EP075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	5 µg/L	70.0	64	115
EP075(SIM): Phenanthrene	85-01-8	1	µg/L	<1.0	5 µg/L	88.6	63	116
EP075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	5 µg/L	84.8	64	116
EP075(SIM): Fluoranthene	206-44-0	1	µg/L	<1.0	5 µg/L	85.9	64	118
EP075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	5 µg/L	96.3	63	118
EP075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	5 µg/L	70.8	64	117
EP075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	5 µg/L	87.8	63	116
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	µg/L	<1.0	5 µg/L	71.4	62	119
	205-82-3							
P075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	5 µg/L	83.0	63	115
P075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 µg/L	76.9	63	117
P075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	77.2	60	118
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	5 µg/L	77.4	61	117
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 µg/L	75.5	59	118
EP080/071: Total Petroleum Hydrocarbons (Q	CLot: 604841)							
EP071: C10 - C14 Fraction		50	μg/L	<50	2000 µg/L	94.2	76	116

Page	: 6 of 7
Work Order	: ES1622123
Client	: SMEC AUSTRALIA PTY LTD
Project	: 3002523 - CANBERRA BRICKWORKS

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLo	t: 604841) - continued							
EP071: C15 - C28 Fraction		100	μg/L	<100	3000 μg/L	99.5	83	109
EP071: C29 - C36 Fraction		50	µg/L	<50	2000 µg/L	93.7	75	113
EP080/071: Total Petroleum Hydrocarbons (QCLo	t: 608112)							
EP080: C6 - C9 Fraction		20	µg/L	<20	260 µg/L	83.2	75	127
EP080/071: Total Recoverable Hydrocarbons - NEI	PM 2013 Fractions (QCL	ot: 604841)						
EP071: >C10 - C16 Fraction		100	μg/L	<100	2500 µg/L	99.4	76	114
EP071: >C16 - C34 Fraction		100	µg/L	<100	3500 μg/L	95.3	81	111
EP071: >C34 - C40 Fraction		100	µg/L	<100	1500 μg/L	101	77	119
EP080/071: Total Recoverable Hydrocarbons - NEI	PM 2013 Fractions (QCL	ot: 608112)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 µg/L	86.9	75	127
EP080: BTEXN (QCLot: 608112)								
EP080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	88.6	70	122
EP080: Toluene	108-88-3	2	μg/L	<2	10 µg/L	89.1	69	123
EP080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	91.4	70	120
EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	10 µg/L	89.4	69	121
	106-42-3							
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	88.0	72	122
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 µg/L	100	70	120

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

CAS Number 7440-38-2 7440-43-9 7440-47-3 7440-60-0	Spike Concentration 1 mg/L 0.25 mg/L 1 mg/L	SpikeRecovery(%) MS 107 107 102	Recovery L Low 70 70	Limits (%) High 130 130
7440-38-2 7440-43-9 7440-47-3	1 mg/L 0.25 mg/L	107 107	70 70	130
7440-43-9 7440-47-3	0.25 mg/L	107	70	
7440-43-9 7440-47-3	0.25 mg/L	107	70	
7440-47-3		-	-	130
	1 mg/L	102		
7440 50 0			70	130
7440-50-8	1 mg/L	104	70	130
7439-92-1	1 mg/L	104	70	130
7440-02-0	1 mg/L	98.8	70	130
7440-66-6	1 mg/L	108	70	130
7439-97-6	0.01 mg/L	88.7	70	130
	7440-66-6	7440-66-6 1 mg/L	7440-66-6 1 mg/L 108	7440-66-6 1 mg/L 108 70

Page	: 7 of 7
Work Order	: ES1622123
Client	: SMEC AUSTRALIA PTY LTD
Project	: 3002523 - CANBERRA BRICKWORKS

Sub-Matrix: WATER				Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP035G: Total Phe	nol by Discrete Analyser (QCLot: 606179) - continued						
EP1609290-001	Anonymous	EP035G: Phenols (Total)		0.42 mg/L	86.2	70	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 608112)						
ES1622090-006	Anonymous	EP080: C6 - C9 Fraction		325 µg/L	84.6	70	130
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCL	.ot: 608112)					
ES1622090-006	Anonymous	EP080: C6 - C10 Fraction	C6_C10	375 μg/L	85.4	70	130
EP080: BTEXN (Q	CLot: 608112)						
ES1622090-006	Anonymous	EP080: Benzene	71-43-2	25 µg/L	76.8	70	130
		EP080: Toluene	108-88-3	25 µg/L	84.2	70	130
		EP080: Ethylbenzene	100-41-4	25 µg/L	91.1	70	130
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	89.3	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	25 µg/L	92.3	70	130
		EP080: Naphthalene	91-20-3	25 µg/L	91.4	70	130

QA/QC Compliance Assessment to assist with Quality Review					
ork Order	: ES1622123	Page	: 1 of 5		
nt	SMEC AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney		
act	: RYAN O'LEARY	Telephone	: +61-2-8784 8555		
	: 3002523 - CANBERRA BRICKWORKS	Date Samples Received	: 30-Sep-2016		
	:	Issue Date	: 10-Oct-2016		
oler	:	No. of samples received	: 1		
er number	:	No. of samples analysed	: 1		

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	unt	Rate	: (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	8	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	0	1	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	12	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	8	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	12	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	n: × = Holding time	breach ; 🗸 = Withi	n holding tim
Method	Sample Date	Extraction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) QC23	28-Sep-2016				07-Oct-2016	27-Mar-2017	1
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) QC23	28-Sep-2016				10-Oct-2016	26-Oct-2016	✓
EP035G: Total Phenol by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EP035G) QC23	28-Sep-2016	05-Oct-2016	26-Oct-2016	1	05-Oct-2016	26-Oct-2016	~
EP068A: Organochlorine Pesticides (OC)							
Amber Glass Bottle - Unpreserved (EP068) QC23	28-Sep-2016	04-Oct-2016	05-Oct-2016	1	06-Oct-2016	13-Nov-2016	~
EP068B: Organophosphorus Pesticides (OP)							
Amber Glass Bottle - Unpreserved (EP068) QC23	28-Sep-2016	04-Oct-2016	05-Oct-2016	1	06-Oct-2016	13-Nov-2016	~
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM)) QC23	28-Sep-2016	04-Oct-2016	05-Oct-2016	1	06-Oct-2016	13-Nov-2016	✓

Page	: 3 of 5
Work Order	: ES1622123
Client	: SMEC AUSTRALIA PTY LTD
Project	: 3002523 - CANBERRA BRICKWORKS

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071) QC23	28-Sep-2016	04-Oct-2016	05-Oct-2016	1	06-Oct-2016	13-Nov-2016	1
Clear glass VOC vial - HCI (EP080) QC23	28-Sep-2016	07-Oct-2016	12-Oct-2016	1	07-Oct-2016	12-Oct-2016	1
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) QC23	28-Sep-2016	04-Oct-2016	05-Oct-2016	1	06-Oct-2016	13-Nov-2016	1
Clear glass VOC vial - HCI (EP080) QC23	28-Sep-2016	07-Oct-2016	12-Oct-2016	4	07-Oct-2016	12-Oct-2016	~
EP080: BTEXN							
Clear glass VOC vial - HCI (EP080) QC23	28-Sep-2016	07-Oct-2016	12-Oct-2016	1	07-Oct-2016	12-Oct-2016	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	8	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	0	1	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
Total Phenol by Discrete Analyser	EP035G	2	9	22.22	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	12	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	8	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	1	100.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Phenol by Discrete Analyser	EP035G	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.25	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	8	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	1	100.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Phenol by Discrete Analyser	EP035G	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Mercury by FIMS	EG035F	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.25	5.00	~	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	8	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	0	1	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard
Total Phenol by Discrete Analyser	EP035G	1	9	11.11	5.00		NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	12	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Total Phenol by Discrete Analyser	EP035G	WATER	In house: Referenced to APHA 5530 B&D. Steam distillable Phenols are reacted with 4-aminoantipyrine. The resultant colour intensity is measured by Seal. This method is compliant with NEPM (2013) Schedule B(3)
Pesticides by GCMS	EP068	WATER	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Phenols After Microdistillation	EP035D	WATER	In house: Referenced to APHA 5530 A, B&D pH adjusted Steam distillable Phenolic compounds. The resultant colour intensity is measured by Discrete Analyser.
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3) . ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

APPENDIX E – CALIBRATION CERTIFICATES

Oil / Water Interface Meter

Instrument Geotech Interface Meter (60M) Serial No. 4427

Air-Met Scientific Pty Ltd
1300 137 067

Item	Test	Pass	Comments
Battery	Compartment	1	
	Capacity	1	
Probe	Cleaned/Decon.	1	
	Operation	✓	
Connectors	Condition	1	
		1	
Tape Check	Cleaned	1	
Connectors	Checked for cuts	1	
Instrument Test	At surface level	1	
2			
	-		

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by: Jiayi Fu Calibration date: 12/09/2016

Next calibration due:

11/11/2016

RENTALS

Equipment Certification Report - TPS 90FLMV Water Quality Meter

This Water Quality Meter has been performance checked and calibrated as follows:

Sensor	Concentration	Span 1	Span 2	Traceability Lot #	Pass?
pН	рН 7.00 / рН 4.00	7.00 рн	4.00 pH	1	Ø
Conductivity	12.88mS/cm	0 mS/cm	12.88 mS/cm		
TDS	36 ppk	0 ppk	36 ppk		Ø
Dissolved Oxygen	Sodium Sulphite / Air	o ppm in Sodium Sulphite	3-55 ppm Saturation in Air		Ľ
Check only					
Redox (ORP) *	Electrode operability test	240mV +/- 10%	240 mv		
mV reading.		ctrode. To convert readings _(min 7.2V) S/NZS 3760)		ogen Electrode), add 199r <u>∠2.7</u> °C aned and checked	mV to the
Tag N	lo:813				
Valid	to: <u>S:/11/16</u>				

Signed:

Date:

Thermo Fisher

SCIENTIFIC

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$30 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent DEENERSDEER	Returned	Item 90FLMV Unit. Ops check/Battery status: pH sensor with wetting cap, 5m Conductivity/TDS/Temperature K=10 sensor, 5m Dissolved oxygen YSI5739 sensor with wetting cap, 5m Redox (ORP) sensor with wetting cap, 5m Power supply 240V to 12V DC 200mA Instruction Manual Quick Guide Syringe with storage solution for pH and ORP sensors Carry Case Check to confirm electrical sefety (tag must be valid)
Ĕ/		Check to confirm electrical safety (tag must be valid)

19/09/2016 Date: Signed:

18/09/2016

TFS Reference	C5105491	Return Date: / /
Customer Reference		Return Time:
Equipment ID	90FLMVS K	Condition on return:
Equipment Serial No.	T0798	

"We do more than give you great equipment... We give you great solutions!"

Phone: (Free Call) 13	00 735 295	Fax: (Free Call) 1800 675 123		Email: RentalsAU@Thermofisher.com
Melbourne Branch	Sydney Branch	Adelaide Branch	Brisbane Branch	121 Beringarra Ave
5 Caribbean Drive,	Level 1, 4 Talavera Road.	27 Beulah Road, Norwood,	Unit 2/5 Ross St	
Scoresby 3179	North Ryde 2113	South Australia 5067	Newstead 4006	

Appendix F - WELL DEVELOPMENT AND GROUNDWATER SAMPLING SHEETS

Well Development Sheet

Project Num 3002523	ber:	Project Location: Canbe	erra Brickworks	Sampler: Ryan	O'Leary and Jaeger Swanepoel
Date	Location	Depth to water (m)	Total depth (m)	Litres purged	Comment
22/09/2016	M1	Dry	8.311	Dry	
22/09/2016	M2	4.091	14.529	25	
22/09/2016	M3	2.741	4.757	3.9	
06/10/2016	M4	1.198	4.815	7.1	
22/09/2016	M5	1.965	4.870	5.7	Water was brown in colour.
22/09/2016	M6	10.547	15.670	10.1	Water is quite clear, slightly turbid.
22/09/2016	M7	15.102	8.565	12.8	
06/10/2016	M8	Dry	15.104	Dry	

PROJECT NAME:	noburra 13	victor	ovKII			Well ID:		plik h.	15-21
PROJECT NUMBER:	3002523					PURGE D	ATE: / ///	10/16 Dr	1 15:30
ING				_		DATE SAN	IPLED: JJV	-	116
CLIENT:	EB (mm): 50					DEPTH OF	WELL (mBTC		0
WELL CASING DIAMET						DEPTH TO	GROUNDWA	TER (mBTOC):	ory
	E GROUND LEVEL (m):					DEPTH TO	0	(m): Dry	
MONUMENT:	GATIC COVERE		STANI ROUNDWATE	D PIPE:		CHECKED	BY: RO		
Purge until field paramet	ers stabilise OR 3-5 casir	ng volumes O	R until "dry", w	hichever o	ccurs first	MATION			
1 casing volume = 0.5L/m for we 1 casing volume = 2L/m for wells 1 casing volume = 8L/m for wells	of 50mm diameter			Method/	pump type: I	Bailer 🗌 Subr	nersible Pump	Other:	
Comment:				Purge St	art Time (24	100 hr):			
				Estimate	d Purge Vol	ume:		Litres (3-5) Well	/olumes
				Actual P	urge Volume	•:		Litres	
					purge dry?	No 🗆	Yes 🛛 if ye		Litres
	Time (24 br)	1		ELD RES	ULTS			ss, when:	Littes
	Time (24 hr)	рН	EC (S/cm)) Rec	lox (mV)	DC)()	Turbidity (NTU)	Temperature (%
After 1 purge									
After 2 purge									
After 3 purge									
After 4 purge									
fter 5 purge									
cceptable Variation:	n/a	+/- 0.1	+/- 10%	+/-	10%	+/	- 10%	+/- 10%	+/- 0.5
re field results acceptable	to allow sampling? Yes	□ No □	If no, why?						+/- 0.5
						LABORAT	ORY ANALY	SIS DETAILS	
	ersible Pump D Other:			Sample ID	:	Duplicate ID:		Triplicate ID:	
quipment: Dedicated/Disp	oosable: 🗌 Decontamina	ted: 🗆		TPH's		PAH		Metals	
ydrocarbon Sheen?	Yes 🗌 🛛 No			BTEX		VOCs		SVOC's	
ater Colour:		Odour:		Other:					
urbidity: Low 🛛 Medium	1 o High o								
			ERAL ENVIR			TIONS			
	I (<15℃) □ Mild (<25℃		<35 ℃) 🗌 Hot	t (<45℃) [Air: Dry 🛛 M	edium 🗆 Hun	nid 🗌 Rain 🗌	
ind: Still Slight Breez	e 🗆 Windy 🗆 Strong W	/ind 🗆 🔡	Sky: Clear 🗌	Scattered	Cloudy				

1	1	l.	1		Well ID:		1	
	nherra B	vickus	rks		PURGE [DATE: 28	109/16	
PROJECT NUMBER:	3002523				DATE SA	MPLED: 21	8/09/16	
CLIENT: LDA					DEPTH C	F WELL (mBT	DC): 14.52	29
WELL CASING DIAMET	ER (mm): 50				DEPTH T		TER (mBTOC):	7.531
CASING HEIGHT ABOVE	E GROUND LEVEL (m)	:			DEPTH T	O BE PURGED	(m):	
MONUMENT:	GATIC COVERI			D PIPE:	CHECKE	DBY: RU)	
Purge until field paramete		ing volumes OI	R until "dry", w	ER PURGING INFO whichever occurs first	RMATION			
1 casing volume = 0.5L/m for well 1 casing volume = 2L/m for wells 1 casing volume = 8L/m for wells	of 50mm diameter			Method/pump type:	Bailer 🗆 Sut	pmersible Pump	Other:	
Comment:				Purge Start Time (2		10:10		
				Estimated Purge Vo		5		
				Actual Purge Volum		5	Litres (3-5) Well	Volumes
				Did well purge dry?	No XX	Vac 🗖 ::(Litres	1
			FI	ELD RESULTS	NODEL	Yes 🗌 if y	es, when?	Litres
SWL 8.172	Time (24 hr)	рН	EC (S/cm	n) Redox (mV)	0	O (ppm)	Turbidity (NTL	J) Temperature (
After 1 purge 1.0 L	10.27	3.51	994	194	7	.61		18.4
SWL 6.687 After 2 purge 2.0L	10:30	6.97	1002	112	3	.51	/	18.2
SWL 8.957 After 3 purge 3.0L	10:32	6.69	1920	110	3	.89	/	18.1
SWL 9.501 After 4 purge 4.0L	10:38	1909	103		.43	/	18.9	
SWL 9.873 After 5 purge 5.0L	10:43	6.89	1923	94	2.	25	/	18.9
cceptable Variation:	n/a	+/- 0.1	+/- 10%	+/- 10%		+/- 10%	+/- 10%	+/- 0.5
are field results acceptable	to allow sampling? Ye SAMPLING DETAILS		If no, why?		LABODA	TODY MUL		
		BINAd		1		TORY ANALY	SIS DETAILS	
	rsible Pump Other	-pm p	2	Sample ID:	Duplicate ID):	Triplicate ID:	
quipment: Dedicated/Disp	osable: 🗌 Decontamin	nated: 🕅		TPH's 🗌	РАН		Metals	
ydrocarbon Sheen?		No 🖾		BTEX 🗌	VOCs		SVOC's	
Vater Colour:		Odour: N	one	Other:				
urbidity: Low 🗶 Medium	High a							
				RONMENTAL CONE	DITIONS			
emp: Cold (<5℃) □ Cool						Medium 🗌 Hu	mid 🗆 Rain 🗆	
ind: Still Slight Breeze ther comments:	e □ Windy □ Strong	Wind 🗆	Sky: Clear 🗌	Scattered Cloudy	у 🗆			
RD RD					0			

PROJECT NAME: (1	inberrn B	vickno	rles			D: M3 E DATE: 28/	109/16	
PROJECT NUMBER:							109/16	
CLIENT: LDA	<u> </u>							2
	EB (mm): 50						DC): 4.75	2 2 2 4
WELL CASING DIAMET	errymny.					TO GROUNDWA	(inb100).	3.006
CASING HEIGHT ABOV					DEPTH	TO BE PURGED		
MONUMENT: 🔍	GATIC COVERI	GR	OUNDWAT	D PIPE:	ORMATION	ED BY: R	9	
Purge until field paramete		ing volumes OF	R until "dry", v	whichever occurs first	st			
1 casing volume = 0.5L/m for wel 1 casing volume = 2L/m for wells 1 casing volume = 8L/m for wells	of 50mm diameter			Method/pump typ	be: Bailer \square S Bludde	ubmersible Pump	Other:	
Comment:				Purge Start Time				
				Estimated Purge		3		
						3	Litres (3-5) Well	Volumes
				Actual Purge Volu			Litres	1
			FI	Did well purge dry ELD RESULTS	y? Not	Yes 🗆 if y	es, when?	Litres
(11/ 21/2)	Time (24 hr)	рН	EC (S/cm	n) Redox (mV)		DO (ppm	Turbidity (NTU)	Temperature (%
SWL 3.152 After 1 purge 1.0L	13:54	6.03	795	142		7.62		16.7
SWL 3.263 After 2 purge 2.0L	13:59	5.93	832	142	6	7.24		16.8
SWL 3. 408 After 3 purge 3.0 L	14:04	5.94	887	142		9.17	/	16.6
after 4 purge								
fter 5 purge								
cceptable Variation:	n/a	+/- 0.1	+/- 10%	+/- 10%		+/- 10%	+/- 10%	+/- 0.5
re field results acceptable	to allow sampling? Ye SAMPLING DETAIL		If no, why?		1.150			
		RInda	ler	Γ	LABOI	RATORY ANALY	SIS DETAILS	
lethod: Bailer 🗌 Subme	ersible Pump Othe	r: phi	mp	Sample ID:	Duplicate	ID:	Triplicate ID:	
quipment: Dedicated/Disp	oosable: 🗌 Decontamin	nated:		TPH's [] РАН		Metals	
ydrocarbon Sheen?	Yes 🗆 🛛 👔	NODE		BTEX [VOCs		SVOC's	
ater Colour: LIEA	r	Odour: N	one	Other:				
urbidity: Low 🗶 Medium	n o High o							
		GEN	ERAL ENVI	RONMENTAL CO	NDITIONS	-		
emp: Cold (<5°C) 🗌 Coo	I (<15℃) □ Mild (<25	℃) 🗆 Warm (•	<35℃) 🛛 H	ot (<45 ℃) 🗌	Air: Dry	🛛 Medium 🗆 Hu	mid 🗆 Rain 🗆	
ind: Still Slight Breez her comments:	e 🗌 Windy 🗌 Strong	Wind 🗆	Sky: Clear 🗆	Scattered Clo	udy 🗆			

PROJECT NUMBER: 3002523 DATE SAMPLED: 17/ CLIENT: LDA DEPTH OF WELL (mBTOC) WELL CASING DIAMETER (mm): 50 DEPTH TO GROUNDWATE CASING HEIGHT ABOVE GROUND LEVEL (m): DEPTH TO BE PURGED (m MONUMENT: M GATIC COVERED: STAND PIPE: CHECKED BY: R0 Purge until field parameters stabilise OR 3-5 casing volumes OR until 'dy', whichever occurs first Teamy owner: CHECKED BY: R0 Purge until field parameters stabilise OR 3-5 casing volumes OR until 'dy', whichever occurs first Teamy owner: Submersible Pump D Comment: BladACF Phimp Comment: Purge Start Time (2400 hr): 14 · 3.0 Estimated Purge Volume: 4 Actual Purge Volume: 4 FIELD RESULTS Did well purge Volume: 4 SWL 1.9.20 14 · 4.0 6.6.3 2.3.0 11.4 7.8.2 SWL 1.9.21 14 · 4.4 6.61 34.7 11.5 3.0.0 3.0.0 SWL 1.9.32 14 · 4.8 6.61 63.3 1.4.5 3.0.0 3.0.0 S.0.0	ATER (mBTOC): /	
Intervention DATE SAMPLED: 1/1/2 CLIENT: L.D.A DEPTH OF WELL (mBTOC WELL CASING DIAMETER (mm): 5.0 DEPTH TO GROUND MATE CASING HEIGHT ABOVE GROUND LEVEL (m): DEPTH TO BE PURGED (mm) DEPTH TO BE PURGED (mm) MONUMENT: CASING HEIGHT ABOVE GROUND LEVEL (m): DEPTH TO BE PURGED (mm) MONUMENT: CATIC COVERED: STAND PIPE: CHECKED BY: CHECKED BY: RO GROUNDWATER PURGING INFORMATION CHECKED BY: RO GROUNDWATER PURGING INFORMATION Purge until field parameters stabilise OR 3-5 casing volumes OR until 'dry', whichever occurs first Intervention of the wells of 50mm dameter Checked BY: RO 1 cashg volume = 0 5Lm for wells of 20mm dameter Cashg volume = 0 5Lm for wells of 100mm dameter Depth PURGED (mm) DEPTH DO EPURGED (mp) Comment: Purge Start Time (2400 hr): 1/4 · 3.0 Estimated Purge Volume: 4 SWL 1.9.20 1/4 · 40 6.63 2.30 1/1/4 7.82 SU/L SWL 1.9.22 1/4 · 44 6.61 3/4 7 1/15 3.00 SU/L SWL 1.9.32 1/4 · 52 6.60 6/33 1/45 2.9/4 Mter 3 purge 3	OC): 4.815 ATER (MBTOC): 1 D (M): -	
DEPTH OF WELL (mBTOC WELL CASING DIAMETER (mm): \$\$\$0 WELL CASING DIAMETER (mm): \$\$\$0 CASING HEIGHT ABOVE GROUND LEVEL (m): DEPTH TO BE PURGED (m MONUMENT: \$\$\$\frac{1}{2}\$\$ GATIC COVERED: \$\$\$ STAND PIPE: CHECKED BY: \$\$\$\$\$ CHECKED BY: \$	ATER (mBTOC): /	
CASING HEIGHT ABOVE GROUND LEVEL (m): DEPTH TO BROUNDWATE MONUMENT: Matter Ground Level (m): DEPTH TO BE PURGED (m) GROUNDWATER PURGING INFORMATION CHECKED BY: RO Purge until field parameters stabilise OR 3-5 casing volumes OR until "dry", whichever occurs first Checked BY: RO 1 cashg volume - 0.5Lm for wells of 25mm duameter Isang volume - 0.5Lm for wells of 25mm duameter Nethod/pump type: Bailer □ Submersible Pump □ Comment: Method/pump type: Bailer, 1.9ump Submersible Pump □ B[////////////////////////////////////	D (m): -	.906
MONUMENT: ▲ GATIC COVERED: STAND PIPE: CHECKED BY: RO Purge until field parameters stabilise OR 3-5 casing volumes OR until "dry", whichever occurs first CHECKED BY: RO 1 casing volume - 0.5Um for wells of 25mm diameter Casing volume - 0.5Um for wells of 25mm diameter Method/pump type: Bailer Submersible Pump 1 casing volume - 0.5Um for wells of 100mm diameter Method/pump type: Bailer Submersible Pump B/A Ad Ur Pump Comment: Purge Start Time (2400 hr): 1/4 · 3.0 Estimated Purge Volume: 4 Actual Purge Volume: 4 Actual Purge Volume: 4 4 SWL 1.420 I.420 6.63 2.30 11/4 7.82 SWL 1.420 I.4244 6.61 3.47 11.5 3.06 SWL 1.922 I.4248 6.61 6.32 1.15 3.00 SWL 1.932 I.4248 6.61 6.33 1.45 2.94 SWL 1.932 I.4248 6.61 6.33 1.45 3.00 SWL 1.932 I.4252 6.60 6.33 1.45 2.94 SWL 1.932 I.4252 6.60 6.33		
GROUNDWATER PURGING INFORMATION Purge until field parameters stabilise OR 3-5 casing volumes OR until "dry", whichever occurs first 1 casing volume = 0.5Lm for wells of 25m diameter 1 casing volume = 2Lm for wells of 25m diameter 1 casing volume = 2Lm for wells of 100m diameter 1 casing volume = 2Lm for wells of 100m diameter 1 casing volume = 2Lm for wells of 100m diameter 1 casing volume = 2Lm for wells of 100m diameter 1 casing volume = 2Lm for wells of 100m diameter 1 casing volume = 2Lm for wells of 100m diameter 1 casing volume = 0.5Lm for wells of 100m diameter 1 casing volume = 0.5Lm for wells of 100m diameter 1 casing volume = 0.5Lm for wells of 100m diameter 1 casing volume = 0.5Lm for wells of 100m diameter 1 casing volume = 0.5Lm for wells of 100m diameter 1 casing volume = 0.5Lm for wells of 100m diameter 1 casing volume = 0.5Lm for wells of 100m diameter 1 casing volume = 0.5Lm for wells of 100m diameter 1 casing volume = 0.5Lm for wells of 100m diameter 1 casing volume = 0.5Lm for wells of 100m diameter 1 casing volume = 0.5Lm for wells of 100m diameter 1 casing volume = 0.5Lm for wells of 0.5Lm for w		
Purge until field parameters stabilise OR 3-5 casing volumes OR until "dry", whichever occurs first 1 casing volume = 0.5Lm for wells of 25mm diameter 1 casing volume = 2.1m for wells of 25mm diameter 1 casing volume = 2.1m for wells of 100mm diameter 1 casing volume = 2.1m for wells of 100mm diameter 1 casing volume = 2.1m for wells of 100mm diameter Comment: Purge Start Time (2400 hr): 1/4 · 3 0 Estimated Purge Volume: 4 Actual Purge Volume: 4 Did well purge dry? No X Yes □ if yes, FIELD RESULTS SWL 1.4120 1/4 : 420 6.63 230 SWL 1.4120 1/4 : 444 6.61 3/47 SWL 1.4120 1/4 : 444 6.61 3/47 SWL 1.922 1/4 : 448 6.61 6/32 1/15 3.06 SWL 1.925 1/4 : 52 6.60 6/33 1/45 2.9/4 Atter 2 purge 3.0L 1/4 : 52 6.60 6/33 1/45 2.9/4 SWL 1.932 1/4 : 52 6.60 6/33 1/45 2.9/4 <td< td=""><td>o □ Other:X</td><td></td></td<>	o □ Other:X	
1 cashg volume = 2Um for wells of 50mm diameter Method/pump type: Bailer □ Submersible Pump □ Comment: Purge Start Time (2400 hr): 14 · 3 · 0 Estimated Purge Volume: 4 Actual Purge Volume: 4 Actual Purge Volume: 4 Did well purge dry? No X Yes □ SWL 1.420 14:40 6.63 230 114 7.82 SWL 1.420 14:44 6.61 347 115 3.06 SWL 1.922 14:44 6.61 347 115 3.00 SWL 1.922 14:52 6.60 633 1455 2.94 SWL 1.932 14:52 6.60 633 1455 2.94 SWL 1.932 14:52 6.60 633 1455 2.94 Atter 3 purge 3.0L 14:52 6.60 633 1455 2.94 SWL 1.932 14:52 6.60 633 1455 2.94 wter 4 purge 4.0L 14:52 6.60 633 1455 2.94 ster 5 purge 4 4 4 4 4 10% <t< td=""><td>o 🗆 Other: 🗶</td><td></td></t<>	o 🗆 Other: 🗶	
Purge Start Time (2400 hr): 14.30 Estimated Purge Volume: 4 Actual Purge Volume: 4 Did well purge dry? No 🗶 Yes 🗆 if yes, FIELD RESULTS FIELD RESULTS SWL 1.920 $14:40$ 6.63 230 114 7.82 SWL 1.922 $14:44$ 6.61 347 115 3.06 SWL 1.922 $14:44$ 6.61 347 115 3.06 SWL 1.925 $14:44$ 6.61 632 115 3.00 SWL 1.932 $14:52$ 6.60 633 145 2.94 Atter 3 purge $3.0L$ $14:52$ 6.60 633 145 2.94 Atter 4 purge $40L$ $14:52$ 6.60 633 145 2.94 Atter 5 purge $4/-10\%$ $4/-10\%$ $4/-10\%$ where 5 purge $4/-10\%$ $4/-10\%$ $4/-10\%$ $4/-10\%$ SAMPLING DETAILS		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Actual Purge Volume:4Did well Purge Volume:4Did well Purge Volume:Ves \Box if yes,FIELD RESULTSSWL 1.920I4 :406.63230II 4SWL 1.920I4 :406.63230II 4SWL 1.922I4 :446.61347II 53.06SWL 1.922I4 :446.61347II 53.06SWL 1.922I4 :486.61632II 53.00SWL 1.922I4 :486.61632II 53.00SWL 1.932I4 :52b.60b33I 452.94Meter 4 purge 4.0 L14:52b.60b33I 452.94Meter 4 purge 4.0 L14:064/-0.1n/a+/-0.1+/-0.1+/-10%refield results acceptable to allow sampling? Yes XNo \Box If no, why?SAMPLING DETAILSLABORATORY ANALYSI	Litres (3-5) Well	Volumes
Did well purge dry? No X Yes \Box if yes, FIELD RESULTS SWL 1.920 IV : 40 6.63 230 II 4 7 SE SWL 1.920 IV : 440 6.63 230 II 4 7 SE SWL 1.922 IV : 444 6.61 347 II5 3.06 SWL 1.922 IV : 448 6.61 632 II5 3.06 SWL 1.922 IV : 448 6.61 632 II5 3.00 SWL 1.932 IV : 52 b.60 633 I 455 2.944 Atter 4 purge 4.0 L IV : 52 b.60 633 I 455 2.944 Atter 4 purge 4.0 L II 10% I/- 10% I/- 10% Atter 4 purge 4.0 L II 10% </td <td>Litres</td> <td></td>	Litres	
FIELD RESULTS Time (24 hr) pH EC (S/cm) Redox (mV) DO (ppm) SWL 1.920 14:40 6.63 230 114 7.82 SWL 1.922 14:44 6.61 347 115 3.06 SWL 1.922 14:44 6.61 632 115 3.06 SWL 1.922 14:48 6.61 632 115 3.00 SWL 1.925 14:48 6.61 632 115 3.00 SWL 1.932 14:52 6.60 633 145 2.94 Atter 3 purge 3.0L 14:52 6.60 633 145 2.94 Atter 4 purge 4.0L 14:52 6.60 633 145 2.94 Atter 5 purge 14:52 6.60 633 145 2.94 Atter 5 purge 14:52 14:0% 4/-10% 4/-10% Nee field results acceptable to allow sampling? Yes X No I If no, why? EABORATORY ANALYSI LABORATORY ANALYSI		Liture
Swl_ 1.920 14:40 6.63 230 114 7.82 Swl_ 1.922 14:44 6.61 347 115 3.06 Swl_ 1.922 14:44 6.61 347 115 3.06 Swl_ 1.922 14:48 6.61 632 115 3.06 Swl_ 1.925 14:48 6.61 632 115 3.00 Swl_ 1.925 14:52 6.60 633 145 2.94 Atter 3 purge 3.01 14:52 6.60 633 145 2.94 Atter 4 purge 4.01 14:52 6.60 633 145 2.94 Atter 4 purge 4.01 14:52 6.60 633 145 2.94 Atter 5 purge 14:52 6.60 633 145 2.94 Atter 5 purge 14:52 14:52 14:50 14:50 14:50 Atter 5 purge 14:52 14:52 14:50 14:50 14:50 Atter 5 purge 14:52 14:52 14:50 14:50 14:50 Atter 5 purge 14:50 14:50 14:50	yes, when?	Litres
After 1 purge $1.0L$ 14.40 6.63 230 114 $7.8L$ SWL 1.922 14.44 6.61 347 115 3.06 SWL 1.922 14.44 6.61 347 115 3.06 SWL 1.926 14.48 6.61 632 115 3.00 Atter 3 purge $3.0L$ 14.48 6.61 632 115 3.00 SWL 1.932 14.52 6.60 633 145 2.94 After 4 purge $4.0L$ 14.52 6.60 633 145 2.94 After 5 purge 14.52 6.60 633 145 2.94 After 5 purge 14.52 14.50 4.70% 4.70% Arter 5 purge 14.40% 4.70% 4.70% 4.70% Nee field results acceptable to allow sampling? Yes X, No \Box If no, why? IABORATORY ANALYSI LABORATORY ANALYSI	Turbidity (NTU) Temperature (%
After 2 purge 2.0L 14.44 6.01 34.1 115 3.06 $5WL 1.926$ 14.48 6.61 632 115 3.00 $After 3 purge 3.0L$ 14.48 6.61 632 115 3.00 $SWL 1.932$ 14.52 6.60 633 145 2.94 After 4 purge $4.0L$ 14.52 6.60 633 145 2.94 After 5 purge 14.50 4.94 After 5 purge 14.50 4.94 Acceptable Variation: n/a $+1.01$ $+1.0\%$ $+1.10\%$ $+1.10\%$ Are field results acceptable to allow sampling? Yes X, No \Box If no, why? LABORATORY ANALYSI	/	17.2
After 3 purge $3.0L$ 14.70 6.61 $0.5C$ 11.5 3.00 SWL 1.932 14.52 6.60 6.33 1.45 2.94 After 4 purge $4.0L$ 14.52 6.60 6.33 1.45 2.94 After 5 purge $1.4.52$ 1.600 6.33 1.45 2.94 Acceptable Variation: n/a $+/-0.1$ $+/-10\%$ $+/-10\%$ $+/-10\%$ Are field results acceptable to allow sampling? Yes No \Box If no, why? LABORATORY ANALYSI	1	16.0
After 4 purge 4.0 L 14.3 C 0.00 633 143 2.94 After 5 purge	/	15.6
After 5 purge	/	15.5
Are field results acceptable to allow sampling? Yes X No I If no, why? SAMPLING DETAILS LABORATORY ANALYSI		
Are field results acceptable to allow sampling? Yes X No I If no, why? SAMPLING DETAILS LABORATORY ANALYSI		
SAMPLING DETAILS LABORATORY ANALYSI	+/- 10%	+/- 0.5
1ethod: Bailer Submersible Pump Other: Bladder Pamesample ID: Duplicate ID:	YSIS DETAILS	
V Joanipie iD. Duplicate iD:	Triplicate ID:	
quipment: Dedicated/Disposable: Decontaminated: 🗙 TPH's DAH	Metals	
ydrocarbon Sheen? Yes 🗆 No 🗶 BTEX 🗆 VOCs 🗆	SVOC's	
later Colour: Brown Odour: None Other:		
urbidity: Low D Medium D High 🗶		
GENERAL ENVIRONMENTAL CONDITIONS		
emp: Cold (<5 ℃) □ Cool (<15 ℃) □ Mild (<25 ℃) □ Warm (<35 ℃) □ Hot (<45 ℃) □ Air: Dry □ Medium □ Humic	umid 🗆 Rain 🗆	
ind: Still Slight Breeze Windy Strong Wind Sky: Clear Cloudy Cloudy ther comments:		

Are field results acceptable to allow sampling? Yes X No If no, why? If no, why? LABORATORY ANALYSIS DETAILS Verticate ID: Triplicate ID: Duplicate ID: Duplicate ID: Triplicate ID: Triplicate ID: Equipment: Dedicated/Disposable: Decontaminated: X TPH's Are field results acceptable to allow sampling? Yes X No All Ad Cr Duplicate ID: Triplicate ID: Triplicate ID: Advice and the sample intervention of the sample interventinterventintervention of the sample interven	Groundwater Sa	and the second se	Selected.			Well ID: M5	1	•
CLIENT: LOA DEPTH OF WELL (mBTOD); 4.870 WELL CASING DIAMETER (mm); S 0 DEPTH TO GROUNDWATER (mBTOD); 1.965 CASING HEIGHT ABOVE GROUND LEVEL (m); DEPTH TO GROUNDWATER (mBTOD); 1.965 CASING HEIGHT ABOVE GROUND LEVEL (m); DEPTH TO BE PURGED (m); CROUNDWATER PURGING INFORMATION OPUrge until field parameters stabilite OR 3-5 casing volumes OR until 'dy', whichever occurs first Image volume : 6.01 (more than diameter) Granu volume: Submersible mean 25m diameter Submersible Purg D. Oher: K Langa volume: S.7 Litres (3-5) Well Volumes Comment: Purge Volume: S.7 Litres (3-5) Well Volumes Purge Volume: S.7 Litres (5-5) Well Volumes Itres (5-5) Well Volumes SWU 2.% 07 Time (24 hr) pH EC (Sem) Redox (m) DO (pp/A) Turbidity (NTU) SWU 2.% 07 Time (24 hr) pH EC (Sem) Redox (m) DO (pp/A) Turbidity (NTU) SWU 2.% 07 Time (24 hr) pH EC (Sem) Redox (m) DO (pp/A) Turbidity (NTU) SWU 2.% 07 Tis : 3.4 0.	The second se		1 CILWOYIL.					
WELL CASING DIAMETER (mm): S 0 DEPTH TO GROUNDWATER (mBTOC): 1, 965 CASING DIAMETER (mm): S 0 DEPTH TO BE PURGED (m): DEPTH TO BEPURGED (m): DEPTH		3002523	1111					
WELL CASING DIAMETER (mm): S 0 DEPTH TO GROUNDWATER (mBTOC): 1, 965 CASING DIAMETER (mm): S 0 DEPTH TO BE PURGED (m): DEPT	CLIENT: LOA					DEPTH OF WELL (mBT	OC): 4.87	0
MONUMENT: X GATIC COVERED: STAND PIPE: CHECKED BY: R.Q. CBOUNDWATER PURCING INFORMATION CHECKED BY: R.Q. CHECKED BY: R.Q. Purge until field parameters stabilies OR 3-5 casing volumes OR until "dry", whichever occurs liter International and the stability of the stabi	WELL CASING DIAMETE	R (mm): 50			-			1.965
Build of the set of 100m damage GROUNDWATCH PURGING INFORMATION Purge until field parameters stabilise OR 3-5 casing volumes OR until 'dy', whichever occurs first Method/pump type; Baller Submersible Pump Other: & IS/A ALVER Purge State Submersible Pump Other: & IS/A ALVER Purge Volume: Comment: Purge State Time (24 hr) pH = ECC. Score Redox (mV) DO (pp/A) Turbidity (NTU) Temperature (7 + 100	CASING HEIGHT ABOVE	GROUND LEVEL (m)				DEPTH TO BE PURGED	(m):	
Purge util field parameters stabilise OR 3-5 casing volumes OR util "dry", whichever occurs first 1 easing volume 3. Unit for wells of 50mm diameter 1 easing volume 3. Unit for wells of 50mm diameter 1 easing volume 3. Unit for wells of 50mm diameter Comment: Purge Start Time (24 00 hr): 15 : 2 S Estimated Purge Volume: 5 - 7 Litres (3-5) Well Volumes Actual Purge Volume: 5 - 7 Litres (3-5) Well Volumes Did well purge dry? No X Yes II iyes, when? Litres FIELD RESULTS FIELD RESULT FIELD RESULTS FIELD RESULT FIELD RESULTS FIELD RESULT F	MONUMENT: 🙇	GATIC COVERE				CHECKED BY: RO		
Leady values = 0.5, m for wells of 50m diameter Leady values = 0.5, m for wells of 50m diameter Leady values = 0.10m diameter	Purge until field parameter	rs stabilise OR 3-5 casi	ng volumes OF	R until "dry", v	ER PURGING INFOF whichever occurs first	MATION		
Comment: Purge Start Time (2400 hr): 15 : 2 \$ Estimated Purge Volume: 5 . 7 Litres (3-5) Well Volumes Actual Purge Volume: 5 . 7 Litres (3-5) Well Volumes Actual Purge Volume: 5 . 7 Litres (3-5) Well Volumes Actual Purge Volume: 5 . 7 Litres SULL 2.817 pH EC (Scm) Redox (mV) Do (<i>pp/h</i>) Turbidity (NTU) Atter 1 purge 1.0 L 15 : 3.4 6.99 4.4.6 1.0 6 3.33	1 casing volume = 0.5L/m for wells 1 casing volume = 2L/m for wells of	of 25mm diameter of 50mm diameter				ailer 🗆 Submersible Pump	Other: 🖌	
Estimated Purge Volume: 5 . 7 Litres (3-5) Well Volumes Actual Purge Volume: 5 . 7 Litres Did well purge Volume: 5 . 7 Litres Did well purge dry? No X Yes 0 If yes, when? Litres SUVL 2: \$01 Time (24 hr) pH ECC (Srem) Redox (mV) DO (\$	Comment:					15.21		
Actual Purge Volume: 5.7 Litres Did well purge dry? No X Yes □ if yes, when? Litres FIELD RESULTS SU/L 2.307 Is 5:34 6.99 446 1.06 3.33 14.5 SU/L 2.817 15:36 7.01 443 1.02 2.99 14.4 SU/L 2.817 15:36 7.01 443 1.02 2.99 14.4 SU/L 2.719 15:40 6.99 440 9.6 2.89 144.4 Atter 1 purge 3.01 15:40 6.99 440 9.6 2.89 14.4 SU/L 2.719 15:40 6.99 440 9.6 2.89 144.4 Atter 3 purge 3.01 15:40 6.99 440 9.6 2.89 144.4 Atter 4 purge						C7	Litres (3-5) Well	Volumos
Did well purge dry? No X Yes If yes, when? Litres FIELD RESULTS SWL 2: % 03 15 : 34 6.99 446 1.06 3.33 14.5 Atter 1 purge 1.0L 15 : 34 6.99 446 1.06 3.33 14.5 SWL 2: % 03 15 : 36 7.01 443 1 0 2 2.99 14.4 Atter 1 purge 1.0L 15 : 36 7.01 4443 1 0 2 2.99 14.4 SWL 2: 710 15 : 40 6.99 440 9.6 2.89 142.4 Atter 2 purge 3.0L 15 : 40 6.99 440 9.6 2.89 142.4 Atter 4 purge Atter 4 purge <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td>F7</td><td></td><td>Volumes</td></td<>					-	F7		Volumes
Time (24 hr) pH EC (S/cm) Redox (mV) DO (bp/A) Turbidity (NTU) Temperature (* SWL 2: 803 i5:34 6.99 446 1.06 3.33 14.5 After 1 purge 1. 04 i5:36 7.01 443 102 2.99 14.4 SWL 2: 190 15:36 7.01 443 102 2.99 14.4 SWL 2: 190 15:40 6.99 440 9.6 2.89 14.4 After 3 purge 3: 01 15:40 6.99 440 9.6 2.89 14.4 After 4 purge 16: 01 14: 00% 14: 00% 14: 00% 14: 00% 14: 00% After 5 purge 16: 01 16: 01 16: 01 16: 01 14: 00% 14: 00% 14: 00% SAMPLING DETAILS No 16: 01 16: 01 16: 01 16: 01 17: 01% 14: 05 Generation: Mather 3 purge 3: 02 0ther: 16: 01 16: 05 16: 05 16: 05 16: 05 16: 05 16: 05								Litres
SWL 2.803 i 5 · . 34 6.99 446 I.06 3.33 I4.5 After 1 purge I. 0L i 5 · . 34 6.99 446 I.06 3.33 I4.5 SWL 2.817 15 · . 36 7.01 443 I 0 2 2.99 I4.4 After 2 purge 2.0L 15 · . 40 6.99 440 9.6 2.89 I4.4 SWL 2.790 I 5 · . 40 6.99 440 9.6 2.89 I4.4 After 3 purge 3.0L I 5 · . 40 6.99 440 9.6 2.89 I4.4 After 4 purge		Time (24 br)		1				
After 1 purge 1 <	SWL 2.803	and the second second second			1	11	Turbidity (NTU	4
Atter 2 purge 7.5:36 7.0:443 7.0:2 7.014 7.4.4 SWL 2.790 15:40 6.99 440 9.6 2.89 14.4 Atter 3 purge 3.01 15:40 6.99 440 9.6 2.89 14.4 Atter 4 purge	After 1 purge 1.0L	15.54			1.06	3.33	/	14.5
SWL 2.190 Atter 3 purge 15:40 6.99 440 96 2.89 14.4 Atter 3 purge	After 2 purge 2.0L	15:36	7.01	443	102	2.99	/	14.4
After 4 purge	5111 2.790	15:40	6.99	440	96	2.89	/	14.4
Acceptable Variation: n/a +/- 0.1 +/- 10% +/- 10% +/- 10% +/- 0.5 Are field results acceptable to allow sampling? Yes X No I If no, why? Image: Constraint of the constraints of the constrai								
Acceptable Variation: n/a +/- 0.1 +/- 10% +/- 10% +/- 10% +/- 0.5 Are field results acceptable to allow sampling? Yes X No I If no, why? It no, why? It no, why? It no, why? SAMPLING DETAILS It no, why? It no, why? It no, why? It no, why? Method: Bailer Submersible Pump X Other: BI Add Cr Duplicate ID: Triplicate ID: Equipment: Dedicated/Disposable: Decontaminated: TPH's PAH Metals Image: Context in the con	After E purce							
Are field results acceptable to allow sampling? Yes X No If no, why? If no, why? LABORATORY ANALYSIS DETAILS Verticate ID: Triplicate ID: Duplicate ID: Duplicate ID: Triplicate ID: Triplicate ID: Equipment: Dedicated/Disposable: Decontaminated: X TPH's Are field results acceptable to allow sampling? Yes X No All Ad Cr Duplicate ID: Triplicate ID: Triplicate ID: Advice and the sample intervention of the sample interventinterventintervention of the sample interven	Alter 5 purge		1					
Are field results acceptable to allow sampling? Yes X No If no, why? LABORATORY ANALYSIS DETAILS SAMPLING DETAILS Method: Bailer Submersible Pump X Other: BI Add Cr Duplicate ID: Triplicate ID: Equipment: Dedicated/Disposable: Decontaminated: X TPH's PAH Metals Image: Color of the colo	Acceptable Variation:	n/a	+/- 0.1	+/- 10%	+/- 10%	+/- 10%	+/- 10%	+/- 0.5
Method: Bailer Submersible Pump Standdl/ Sample ID: Duplicate ID: Triplicate ID: Equipment: Dedicated/Disposable: Decontaminated: TPH's PAH Metals Image: Control of the context in t				If no, why?				
Submersible Pump Other: pmmp Sample ID: Duplicate ID: Triplicate ID: Equipment: Dedicated/Disposable: Decontaminated: Image: Content in the image: Content in th		SAMPLING DETAIL	-	1		LABORATORY ANAL	YSIS DETAILS	·····
Hydrocarbon Sheen? Yes NoX BTEX VOCs SVOC's Image: Colour: Co	Nethod: Bailer 🗌 Subme	rsible Pump X Othe	phi phi	np	Sample ID:	Duplicate ID:	Triplicate ID:	
Vater Colour: Brown Mone Other: urbidity: Low Medium High Other: Other: GENERAL ENVIRONMENTAL CONDITIONS remp: Cold (<5°C)	Equipment: Dedicated/Disp	osable: 🗌 Decontamir	nated: 🕱		TPH's 🗆	РАН 🗆	Metals	
Value of oldul. Other: urbidity: Low Medium High GENERAL ENVIRONMENTAL CONDITIONS iemp: Cold (<5°C)	lydrocarbon Sheen?	Yes 🗆 🕴	NoX		BTEX 🗆	VOCs 🗆	SVOC's	
GENERAL ENVIRONMENTAL CONDITIONS "emp: Cold (<5°C)	Vater Colour: Brow	'n	Odour: N	one	Other:			
emp: Cold (<5°C)	urbidity: Low 🗆 Medium	B High						
Vind: Still Slight Breeze Windy Strong Wind Sky: Clear Scattered Cloudy						ITIONS		
Vind: Stight Breeze U Windy Strong Wind Sky: Clear Cloudy Cloudy Clear			T				umid 🗌 Rain 🗆	
differ continients.	ther comments:	e □ Windy □ Strong	Wind L	Sky: Clear L	Scattered Cloudy			
	ampler Name: RO				Purger Name: R	0		

PROJECT NAME:	anberrn 1	Brickman	orks			17	10/16	
PROJECT NUMBER:					PURGE (MPLED: 17		
CLIENT: LDA	·						1-1-)
OLIENT.	FR (mm): 50					OF WELL (mBTC		
WELL CASING DIAMET	<u>-n (mm).</u>						TER (mBTOC):	2.111
CASING HEIGHT ABOVI						O BE PURGED		
	GATIC COVERI	GR	STANE OUNDWATE	R PURGING INFOR	CHECKE	DBY: RO		
Purge until field paramete 1 casing volume = 0.5L/m for well		ng volumes Of	R until "dry", wi	hichever occurs first				
1 casing volume = 2L/m for wells 1 casing volume = 8L/m for wells	of 50mm diameter			Method/pump type: I	Bailer 🗆 Sub S/NddUI	pnmp	🗆 Other: 🖄	
Comment:				Purge Start Time (24	100 hr): /	5:45		
				Estimated Purge Vol		2	Litres (3-5) Well	Volumos
				Actual Purge Volume		2		volumes
				Did well purge dry?	No 🗹	Yes 🗌 if ye	Litres	
	1		FIE		NO EQ		es, when?	Litres
SWL 12.459	Time (24 hr)	pH	EC (S/cm)		C	o (ppm	Turbidity (NTU	
After 1 purge 1.0L	16:00	6.96	2250	131	5	18	/	14.8
SWL 12-618 After 2 purge 2.0L	16:11	6.91	2250	129	5	30	/	15.2
After 3 purge								
After 4 purge								
After 5 purge								
acceptable Variation:	n/a	+/- 0.1	+/- 10%	+/- 10%		+/- 10%	+/- 10%	+/- 0.5
re field results acceptable			If no, why?				+/ 10/0	1 +/- 0.5
	SAMPLING DETAIL				LABORA	TORY ANALY	SIS DETAILS	
lethod: Bailer 🗌 Subme	rsible Pump D Othe	r: Bladde	ir pamp	Sample ID:	Duplicate II	D:	Triplicate ID:	
quipment: Dedicated/Disp	osable: 🗌 Decontamin	nated: 🕱		TPH's	РАН		Metals	
ydrocarbon Sheen?	Yes 🗆	No 🛋		BTEX 🗆	VOCs		SVOC's	
ater Colour: Ligh	t brown	Odour: A	lone	Other:				
urbidity: Low Medium	n⊡ High' x							
		GEN	ERAL ENVIR	ONMENTAL COND	DITIONS			
emp: Cold (<5°C) 🗌 Coo	I (<15℃) □ Mild (<25	℃) 🗆 Warm (<35°C) □ Ho	t (<45℃) 🗌	Air: Dry	Medium 🗌 Hu	mid 🗌 Rain 🗌	
ind: Still Slight Breez	e 🗆 Windy 🗆 Strong	Wind 🗆	Sky: Clear 🗌	Scattered Cloudy	10			
her comments:								
moler Name: RO								

BROJECT NAME: CA	The second se	11 world	1				M7	9/16	
PROJECT NUMBER:	3002523	2121111	<u> </u>			PURGE D	17/1	10/16	
100	5000000					DATE SAM		. 15.67	
GLIENT.	EB (mm): 50						F WELL (mBTOC)		600
WELL CASING DIAMETE							O GROUNDWATE		
CASING HEIGHT ABOVE	GATIC COVERE						DBE PURGED (m)):	
		GR	OUNDWAT	D PIPE:		CHECKED MATION) BY: / C U		
Purge until field paramete 1 casing volume = 0.5L/m for wells		ng volumes OF	R until "dry", w	whichever occurs	s first				
1 casing volume = 2L/m for wells of 1 casing volume = 8L/m for 1 casing vol	of 50mm diameter			Method/pump			mersible Pump ロ タムMp	Other: 🕱	
Comment:				Purge Start T			3:40		
						55 (11):			
				Estimated Pu			3	Litres (3-5) Well	Volumes
				Actual Purge				Litres	
			FI	Did well purge		No 🕅	Yes 🗌 if yes,	when?	Litres
(1) 19 24	Time (24 hr)	рН	EC (S/cm	n) Redox (i	mV)	D	O(ppm)	Turbidity (NTU)	Temperature (9
SWL 12.346 After 1 purge 1.0L	13:50	6.3	362	156		7	91	/	19.5
SWL 12.70 After 2 purge 2.0L	13:53	6.46	403	145	-	7	.84	/	19.8
5(~/L 1),067 After 3 purge 3.0L	13:56	6.5	445	136		7	.83	/	20.0
After 4 purge									
After 5 purge									
Acceptable Variation:	n/a	+/- 0.1	+/- 10%	+/- 109	6		+/- 10%	+/- 10%	+/- 0.5
Are field results acceptable			If no, why?					•	
	SAMPLING DETAIL		1	1		LABORA	TORY ANALYSI	SDETAILS	
Method: Bailer 🗌 Subme	ersible Pump 🖄 Othe	Bladd	nmp	Sample ID:		Duplicate I	D:	Triplicate ID:	
Equipment: Dedicated/Disp	oosable: 🗌 Decontamir	nated: 🕅		TPH's		PAH		Metals	
Hydrocarbon Sheen?	Yes 🗆	No 🕰		BTEX		VOCs		SVOC's	
Water Colour: B/c	iwn	Odour: N	one	Other:					
Turbidity: Low 🗆 Mediun	n 🗆 High🖌								
				RONMENTAL	COND	ITIONS			
Femp: Cold (<5℃) □ Coc			(<35℃)□ ⊢	lot (<45 ℃) 🗌		Air: Dry 🛛	Medium 🗌 Humi	d 🗌 Rain 🗌	
Wind: Still Slight Breez Other comments:	te 🗌 Windy 🗌 Strong	Wind 🗌	Sky: Clear 🗆	Scattered	Cloudy		_		
n .	2				0				
Sampler Name: RC	/			Purger Name:	R	0			

PROJECT NAME:	anberra i	Brick	works			D: M8 E DATE: 17/	10/16 Dr	11 15.17/1
PROJECT NUMBER:	3002523					0	SU 17/1	y 15:00
CLIENT: LDA						SAMPLED:	15.10	7.0
WELL CASING DIAMET	ER (mm): 50					HOF WELL (mBTC		5.096 K
CASING HEIGHT ABOV						TO GROUNDWA	10	S. 010 K
	GATIC COVER		STAN			TO BE PURGED	/	
Purge until field paramet		GI	ROUNDWAT		RMATION	ED BY: 12 0		
1 casing volume = 0.5L/m for we 1 casing volume = 2L/m for wells 1 casing volume = 8L/m for wells	lls of 25mm diameter of 50mm diameter	ng volumes O	'H until "dry",	Method/pump type	: Bailer 🗌 🖇	Submersible Pump	Other:	
Comment:				Purge Start Time (2	2400 hr):			
				Estimated Purge V	olume:		Litres (3-5) Well	Volumes
				Actual Purge Volum	ne:		Litres	- sidinica
				Did well purge dry?		Yes □ if ye		Litres
	Time (24 hr)	рН	EC (S/cr	IELD RESULTS				
			20 0 3/01	n) Redox (mV)		DO ()	Turbidity (NTU)	Temperature (°C
After 1 purge								
fter 2 purge								
fter 3 purge								
fter 4 purge								
fter 5 purge								
cceptable Variation:	n/a	+/- 0.1	+/- 10%	+/- 10%		+/- 10%	+/- 10%	+/- 0.5
re field results acceptable	to allow sampling? Yes	No 🗆	If no, why?					+/- 0.5
ethod: Bailer 🛛 Subme				I	LABOR	ATORY ANALYS	SIS DETAILS	
	rsible Pump D Other			Sample ID:	Duplicate	ID:	Triplicate ID:	
quipment: Dedicated/Disp	osable: 🗌 Decontamina	ated: 🗆		TPH's	PAH		Metals	
drocarbon Sheen?	Yes 🗌 🛛 N	0 🗆		BTEX 🗆	VOCs		SVOC's	
ater Colour:		Odour:		Other:				Auto-
rbidity: Low 🛛 Medium	High -							
				RONMENTAL CON	DITIONS			
mp: Cold (<5°C) 🗌 Cool				ot (<45℃) □ Scattered □ Cloud] Medium 🗌 Hum	id 🗆 Rain 🗆	
er comments:								