

CIVIL ENGINEERING REPORT: TRAFFIC IMPACT ASSESSMENT

# **Casey Apartments**

Block 9 Section 132, Casey

PREPARED FOR Jega LG08/17 The Causeway Kingston ACT 2604

Ref: CR220895\_EC01 Rev: 2.2 Date: 02.05.2024 R



## Traffic Impact Assessment Report

### **Revision Schedule**

| Date       | Revision | Issue                      | Prepared By | Approved By |
|------------|----------|----------------------------|-------------|-------------|
| 14.09.2022 | 1.0      | Development Application    | N.Grinter   | M.Pike      |
| 07.10.2022 | 1.1      | Development Application V1 | N.Grinter   | M.Pike      |
| 21.12.2022 | 1.2      | Development Application V2 | N.Grinter   | M.Pike      |
| 23.01.2023 | 1.3      | Development Application V2 | N.Grinter   | M.Pike      |
| 11.08.2023 | 2.0      | Development Application V3 | N.Grinter   | M.Pike      |
| 22.04.2024 | 2.1      | Report Amendment for ACAT  | M.Pike      | J.Wiltshire |
| 02.05.2024 | 2.2      | Report Amendment for ACAT  | M.Pike      | J.Wiltshire |

#### Northrop Consulting Engineers Pty Ltd

ACN 064 775 088 | ABN 81 094 433 100

SAP House, Level 6, 224 Bunda Street (PO Box 213), Canberra ACT 2608

02 6285 1822 | canberra@northrop.com.au | www.northrop.com.au

© 2024 Northrop Consulting Engineers Pty Ltd. All rights reserved.

This document has been prepared on behalf of and for the exclusive use of Jega, and is subject to and issued in accordance with the agreement between Jega and Northrop Consulting Engineers. Northrop Consulting Engineers accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this document by any third party. Copying this document without the permission of Jega or Northrop Consulting Engineers is not permitted.



## Table of Contents

| 1.    | Introduction                         | 3  |
|-------|--------------------------------------|----|
| 1.1   | Purpose of Report                    | 3  |
| 1.2   | Study Objectives                     | 3  |
| 1.3   | References                           | 4  |
| 2.    | Proposed Development                 | 5  |
| 2.1   | Surrounding Area                     | 5  |
| 2.2   | Development Description and Locality | 5  |
| 3.    | Existing Conditions                  | 8  |
| 3.1   | Study Area                           | 8  |
| 3.2   | Study Area Land Use                  | 8  |
| 3.3   | Site Accessibility                   | 8  |
| 3.4   | Traffic Volumes and Conditions       | 10 |
| 3.5   | Carparking                           | 23 |
| 3.6   | Public Transport                     | 26 |
| 3.7   | Active Travel                        | 28 |
| 3.8   | Accident Data                        | 29 |
| 4.    | Proposed Development                 | 30 |
| 4.1   | Development Description              | 30 |
| 4.2   | Access                               | 30 |
| 4.3   | Compliance to Relevant Standards     |    |
| 4.4   | Traffic Generation                   | 31 |
| 4.5   | Traffic Distribution                 | 32 |
| 4.6   | Traffic Modal Split                  | 35 |
| 4.7   | Traffic Impact                       | 35 |
| 4.8   | Parking                              | 42 |
| 5.    | Conclusion                           | 44 |
| Appen | idix A Response to NOD               | 46 |
| Appen | idix B SIDRA Results                 | 47 |
| Appen | idix C Drawings                      | 48 |
| Appen | idix D Carpark Compliance Check      | 49 |



## 1. Introduction

### 1.1 Purpose of Report

Northrop Consulting Engineers Pty Ltd (Northrop) have been engaged by Jega to prepare a Traffic Impact Assessment (TIA) for the proposed development on Block 9 Section 132, Casey (referred to as to the subject site in this report).

This TIA investigates the impact which the additional traffic to the area will have on the current surrounding vicinity.

### 1.2 Study Objectives

This TIA is in line with the intent of the ACT Government Transport Canberra and City Services Directorate (TCCS) Guidelines for Transport Impact Assessment (Version 3.1, April 2020) as well as the Austroads Guide to Traffic Management Part 12: Integrated Transport Assessments for Developments (2020).

This TIA addresses the comments from TCCS relating to traffic from the Notice of Decision (NOD) for DA No. 202241107 dated 01/05/2023 (pages 12 and 13 of the NOD). Comments have been addressed through the report and Appendix A.

The Development Application went through an ACAT process and several changes were made to the design. The changes which impact on this traffic report include a reduction in the number of units in the development. This is outlined further in Section 4 of this report.

This TIA will detail the below:

- An introduction to the report and summary of the proposed development;
- A summary of the development site and nearby conditions;
- An investigation in the existing conditions of the site and key roads including:
  - o Traffic Volumes and conditions at key intersections;
  - Public transport within the vicinity of the site;
  - Active travel within the vicinity of the site.
- A summary of the projected traffic and parking conditions from the proposed development and surrounding key roads and intersections including:
  - The trip generation, trip distribution, modal split and trip assignment for the site generated traffic;
  - The increase of traffic at the key intersections;
  - The car park generation on site against the amount of car parking required; and
  - Car park compliance commentary.
- A transportation analysis including:
  - Commentary on proposed site access locations;
  - Commentary on the SIDRA Intersections models completed by Northrop for the key intersections for the base case, development conditions and future conditions for the site; and
  - Commentary on the current accident data for the key roads near the site supplied from the TCCS.
- A summary of the findings regarding:
  - Site accessibility;
  - o Transportation impacts; and
  - o Parking impacts.



The key intersections for this TIA are:

- Kingsland Parade and Bentley Place;
- Kingsland Parade and Clarrie Hermes Drive; and
- Horse Park Drive and Overall Avenue.

The key roads for this TIA are:

- Kingsland Parade between Clarrie Hermes Drive and Dalkin Crescent North; and
- Bentley Place.

#### 1.3 References

In preparation of this report, reference has been made to the following:

- Inspections of the site and its surroundings;
- ACT Government TCCS Guidelines for Transport Impact Assessment (Version 3.1, April 2020);
- Austroads Guide to Traffic Management Part 12: Integrated Transport Assessments for Developments (2020)
- Traffic surveys as undertaken by Matrix Traffic and Transport Data as referenced in the context of this report;
- AS2890.1:2004 Parking facilities Part 1: Off-street car parking;
- AS2890.2:2018 Parking facilities Part 2: Off-street commercial vehicle facilities;
- ACT Planning and Land Authority Parking and Vehicular Access General Code (June, 2022);
- NSW Transport Roads & Maritime Services Guide to Traffic Generating Developments Updated Traffic Surveys (August, 2013);
- NSW Transport Roads & Maritime Services (RTA) Guide to Traffic Generating Developments – V2.2 (October, 2002); and
- Other documents as referenced by this report.



## 2. Proposed Development

## 2.1 Surrounding Area

The proposed development is located within the suburb of Casey in Canberra. In the vicinity of the subject site, the surrounding land use is generally residential in nature. Nearby points of interests include the following:

- The Casey Market Town Shops at Block 3, Section 131 Casey;
- The car park available to the public located at Block 10, Section 132 Casey; and
- The 7 Eleven Petrol Station located at Block 6, Section 132 Casey.

The nearby points of interest and their location in relation to the site are shown in Figure 1.




Figure 1 Nearby Points of Interest to the Site

#### 2.2 Development Description and Locality

The proposed development will include a new multi-storey mixed-use building comprising of 143 residential units, 13 commercial units plus retail space, bicycle parking and basement parking. An extract of drawing DA-20-04 Revision 5 by Cox Architecture (dated 05/03/2024) is shown in Figure 2. The proposed development is anticipated to have a gross floor area (GFA) of approximately 20,131m2 in accordance with drawing DA-01-02 Revision 5 by Cox Architecture (dated 05/03/2024).



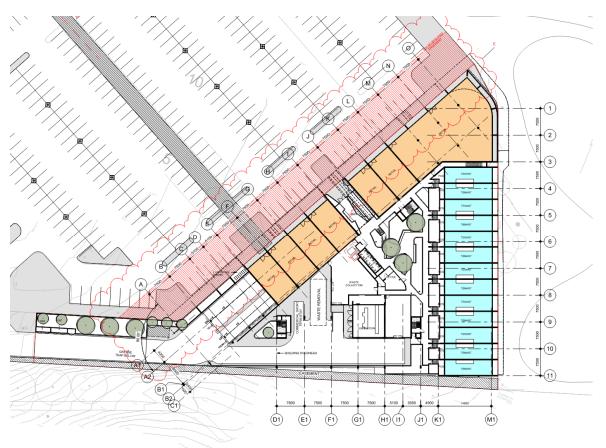



Figure 2 Proposed Development Upper Ground Plan

The subject site is located on Block 9, Section 132 Casey which is off Bentley Place. Figure 3 shows the general site within the Casey area and Figure 4 shows the site-specific location.



Figure 3 Site Locality within Casey





Figure 4 Site Specific Location

Figure 5 illustrates the locality of the subject site in relation to the key roads and intersections outlined in Section 1.2 of this report. Figure 5 also shows the extent of Overall Avenue to assist in addressing the TCCS traffic comments from the NOD. The key intersections have a red circle on them for identification purposes in Figure 5.



Figure 5 Key Roads and Intersections in relation to the Subject Site



## 3. Existing Conditions

### 3.1 Study Area

#### 3.1.1 Area of Influence

For the purpose of this TIA Report, the key roads and intersections of interest are as follows:

#### Key Roads:

- Kingsland Parade between Clarrie Hermes Drive and Dalkin Crescent; and
- Bentley Place.

#### **Key Intersections:**

- Kingsland Parade and Bentley Place;
- Kingsland Parade and Clarrie Hermes Drive; and
- Horse Park Drive and Overall Avenue.

As part of this TIA, observations have been undertaken at the intersection of Clarrie Hermes Drive and Overall Avenue to assist addressing TCCS traffic comments from the NOD.

#### 3.2 Study Area Land Use

#### 3.2.1 Existing Land Use

At the time of this TIA, the subject site is a vacant block of land.

#### 3.2.2 Existing Zoning

The subject site is zoned in the ACT Government Territory Plan as CZ1: Core Zone. Northrop understand that the land is within the Casey Group Centre.

#### 3.3 Site Accessibility

#### 3.3.1 Area Roadway System

#### 3.3.1.1 Existing Roads Hierarchy

The subject site can be accessed via Bentley Place from the Eastern leg of the Kingsland Parade and Bentley Place intersection. The hierarchy of these roads are defined as follows in accordance with Active Travel Infrastructure Planning Map (accessed on the 16/07/2023):

- Kingsland Parade Minor Collector
- Bentley Place Local Access Street (Access Street)

Kingsland Parade intersects with Overall Avenue at the North and Clarrie Hermes Drive at the South. The hierarchy of these roads are defined as follows in accordance with Active Travel Infrastructure Planning Map (accessed on the 16/07/2023):

- Overall Avenue Major Collector
- Clarrie Hermes Drive Arterial Road



TCCS Municipal Infrastructure Standards (MIS) 01 Street Planning and Design Edition 1 Revision 1 described a Minor Collector and an Access Road as follows:

- **Minor Collector:** Minor collector roads distribute traffic from Access Streets to Major Collector or Arterial Roads.
- Access Streets: Access Streets are used where the residential environment is dominant, traffic is subservient, speed and volumes are low and pedestrian and cycle movements are facilitated.
- **Major Collector:** Major collector roads are part of urban neighbourhoods. These roads collect and distribute traffic between the primary (arterial and sub-arterial) road network and the user destinations.
- **Arterial Road:** Arterial Roads are strategically significant roads that cater for high vehicle volumes travelling over large distances. They do not interact with the places that the road passes through.

#### 3.3.1.2 Existing Traffic Infrastructure and Traffic Controls for the Key Roads

#### 3.3.1.2.1 Kingsland Parade

Between Clarrie Hermes Drive and Dalkin Crescent (North), Kingsland Parade is aligned in a North/South direction. It is a two lane – two way road with a carriageway of an approximate width of 10m. Kingsland Parade between Clarrie Hermes Drive and Dalkin Crescent (North) has a posted speed limit of 40 km/h.

There are indented parking bays (90 degree and parallel bays) as well as two bus laybys along this section of Kingsland Parade.

#### 3.3.1.2.2 Bentley Place

Bentley place is aligned in an East/West direction. It is a two lane - two way road with a carriageway of an approximate width of 7m. Bentley Place between Kingsland Parade and the subject site has a posted speed of 40km/h.



#### 3.4 **Traffic Volumes and Conditions**

 Table 1: Traffic Volumes on Thursday 27/10/2022

#### 3.4.1 **Current Traffic Volumes**

Matrix Traffic and Transport Data (Matrix) were engaged by Northrop to undertake a traffic survey for the key intersections over a Thursday between 6am to 10am and 2:30pm to 6:30pm and a Saturday between 7am to 3pm.

### 3.4.1.1 Current Traffic Volumes at the Intersection of Kingsland Parade, Dalkin Crescent and **Bentley Place**

The traffic survey outlining the traffic volumes at the roundabout intersection of Kingsland Parade, Dalkin Crescent and Bentley Place for the 27/10/2022 (Thursday) and the 29/10/2022 (Saturday) are summarised in Table 1 and Table 2 respectively.

|      |          | -         |            |      |
|------|----------|-----------|------------|------|
|      |          |           | AM         | PM \ |
| Road | Location | Direction | Volume (as |      |

| Road                | Location    | Direction  | AM<br>Volume (as<br>surveyed) | PM Volume<br>(as<br>surveyed) | AM Peak<br>Volume<br>(veh/hr) | PM Peak<br>Volume<br>(veh/hr) |
|---------------------|-------------|------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Kingsland           | Northern    | Northbound | 737                           | 1,529                         | 226                           | 438                           |
| Parade              | Leg         | Southbound | 559                           | 877                           | 221                           | 240                           |
| Bentley<br>Place    | Eastern Leg | Eastbound  | 41                            | 139                           | 12                            | 46                            |
|                     |             | Westbound  | 425                           | 702                           | 122                           | 217                           |
| Kingsland<br>Parade | Southern    | Northbound | 703                           | 1,566                         | 217                           | 447                           |
|                     | Leg         | Southbound | 1,003                         | 1,416                         | 354                           | 388                           |
| Dalkin              | Western     | Eastbound  | 214                           | 192                           | 83                            | 57                            |
| Crescent            | Leg         | Westbound  | 120                           | 253                           | 51                            | 89                            |

#### Note:

- 1. The AM and PM Peak Periods have been identified to be between 8:15am to 9:15am and 5:30pm to 6:30pm respectively.
- 2. The entry to Bentley Place has a low vehicular usage compared with the remainder of the legs of the intersection.



#### Table 2: Traffic Volumes on Saturday 29/10/2022 2022

| Road          | Location        | Direction  | 8-hour<br>Volume (as<br>surveyed) | AM Peak<br>Volume<br>(veh/h) | PM Peak<br>Volume<br>(veh/hr) |
|---------------|-----------------|------------|-----------------------------------|------------------------------|-------------------------------|
| Kingsland     | Northern        | Northbound | 2,198                             | 308                          | 357                           |
| Parade        | Leg             | Southbound | 1,477                             | 227                          | 217                           |
| Bentley Place | Eastern<br>Leg  | Eastbound  | 215                               | 38                           | 38                            |
|               |                 | Westbound  | 1,167                             | 178                          | 219                           |
| Kingsland     | Southern<br>Leg | Northbound | 2,249                             | 331                          | 388                           |
| Parade        |                 | Southbound | 2,517                             | 394                          | 400                           |
| Dalkin        | Western         | Eastbound  | 400                               | 65                           | 40                            |
| Crescent      | Leg             | Westbound  | 363                               | 61                           | 69                            |

#### Note:

1. The AM and PM Peak Periods have been identified to be between 11:00am to 12:00pm and 12:15pm to 1:15pm respectively.

2. The entry to Bentley Place has a low vehicular usage compared with the remainder of the legs of the intersection.



# 3.4.1.2 Current Traffic Volumes at the Intersection of Kingsland Parade and Clarrie Hermes Drive

The traffic survey outlining the traffic volumes at the roundabout intersection of Kingsland Parade and Clarrie Hermes Drive for the 10/11/2022 (Thursday) and the 12/11/2022 (Saturday) are summarised in Table 3 and Table 4 respectively.

| Road              | Location        | Direction  | AM<br>Volume (as<br>surveyed) | PM Volume<br>(as<br>surveyed) | AM Peak<br>Volume<br>(veh/hr) | PM Peak<br>Volume<br>(veh/hr) |
|-------------------|-----------------|------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Kingsland         | Northern        | Northbound | 636                           | 1,571                         | 189                           | 405                           |
| Parade            | Leg             | Southbound | 979                           | 1,404                         | 299                           | 353                           |
| Clarrie<br>Hermes | Eastern Leg     | Eastbound  | 2,021                         | 3,002                         | 718                           | 782                           |
| Drive             |                 | Westbound  | 2,313                         | 3,257                         | 737                           | 950                           |
| Playing<br>Field  | Southern<br>Leg | Northbound | 63                            | 129                           | 33                            | 64                            |
| Access            |                 | Southbound | 66                            | 184                           | 38                            | 45                            |
| Clarrie<br>Hermes | Western         | Eastbound  | 1,823                         | 3,261                         | 630                           | 859                           |
| Drive             | Leg             | Westbound  | 2,455                         | 3,294                         | 754                           | 994                           |

#### Table 3: Traffic Volumes on Thursday 10/11/2022

Note:

1. The AM and PM Peak Periods have been identified to be between 8:00am to 9:00am and 3:15pm to 4:15pm respectively.

2. Insignificant traffic utilised the Southern let of the intersection during the surveyed periods.

3. Clarrie Hermes Drive has the largest number of vehicles travelling along it at this intersection.



#### Table 4: Traffic Volumes on Saturday 12/11/2022 2022

| Road              | Location     | Direction  | 8-hour<br>Volume (as<br>surveyed) | AM<br>Peak<br>Volume<br>(veh/h) | PM Peak<br>Volume<br>(veh/hr) |
|-------------------|--------------|------------|-----------------------------------|---------------------------------|-------------------------------|
| Kingsland         | Northern Leg | Northbound | 2,289                             | 368                             | 380                           |
| Parade            | Normenn Leg  | Southbound | 2,584                             | 397                             | 428                           |
| Clarrie<br>Hermes | Eastern Leg  | Eastbound  | 4,695                             | 688                             | 737                           |
| Drive             |              | Westbound  | 5,002                             | 754                             | 824                           |
| Playing<br>Field  | Southern     | Northbound | 213                               | 17                              | 75                            |
| Access            | Leg          | Southbound | 222                               | 23                              | 28                            |
| Clarrie<br>Hermes | Western Leg  | Eastbound  | 4,658                             | 704                             | 708                           |
| Drive             | western Leg  | Westbound  | 5,251                             | 797                             | 888                           |

#### Note:

1. The AM and PM Peak Periods have been identified to be between 11:00am to 12:00pm and 12:00pm to 1:00pm respectively.

2. Insignificant traffic utilised the Southern let of the intersection during the surveyed periods.

3. Clarrie Hermes Drive has the largest number of vehicles travelling along it at this intersection.

## NORTHROP

### 3.4.1.3 Current Traffic Volumes at the Intersection of Horse Park Drive and Overall Avenue

The traffic survey outlining the traffic volumes at the roundabout intersection of Horse Park Drive and Overall Avenue for the 27/10/2022 (Thursday) and the 29/10/2022 (Saturday) are summarised in Table 5 and Table 6 respectively.

| Road                | Location        | Direction  | AM<br>Volume (as<br>surveyed) | PM Volume<br>(as<br>surveyed) | AM Peak<br>Volume<br>(veh/hr) | PM Peak<br>Volume<br>(veh/hr) |
|---------------------|-----------------|------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Horse Park<br>Drive | Northern        | Northbound | 1,578                         | 2.860                         | 532                           | 900                           |
|                     | Leg             | Southbound | 2,476                         | 2,306                         | 967                           | 615                           |
| Newlop              | Eastern Leg     | Eastbound  | 195                           | 517                           | 79                            | 166                           |
| Street              |                 | Westbound  | 451                           | 455                           | 178                           | 145                           |
| Horse Park<br>Drive | Southern<br>Leg | Northbound | 1,398                         | 2,923                         | 498                           | 913                           |
|                     |                 | Southbound | 2,560                         | 2,079                         | 951                           | 533                           |
| Overall             | Western         | Eastbound  | 886                           | 1,141                         | 340                           | 345                           |
| Avenue              | Leg             | Westbound  | 878                           | 1,369                         | 421                           | 419                           |

#### Table 5: Traffic Volumes on Thursday 27/10/2022

Note:

- 1. The AM and PM Peak Periods have been identified to be between 8:00am to 9:00am and 5:15pm to 6:15pm respectively.
- 2. The majority of traffic flows along Horse Park Drive.
- 3. Vehicles appear to be rat running through Overall Avenue to avoid the arterial road network. The project team notes that this is not part of the scope of this TIA and recommends Road ACT consider further investigation of the traffic volumes and speeds along Overall Avenue separate to this study.



#### Table 6: Traffic Volumes on Saturday 29/10/2022 2022

| Road             | Location       | Direction  | 8-hour<br>Volume (as<br>surveyed) | AM Peak<br>Volume<br>(veh/h) | PM Peak<br>Volume<br>(veh/hr) |
|------------------|----------------|------------|-----------------------------------|------------------------------|-------------------------------|
| Horse Park       | Northern       | Northbound | 3,272                             | 490                          | 523                           |
| Drive            | Leg            | Southbound | 4,139                             | 665                          | 563                           |
| Newlop<br>Street | Eastern<br>Leg | Eastbound  | 695                               | 131                          | 119                           |
|                  |                | Westbound  | 812                               | 111                          | 119                           |
| Horse Park       | Southern       | Northbound | 3,199                             | 503                          | 543                           |
| Drive            | Leg            | Southbound | 4,028                             | 628                          | 550                           |
| Overall          | Western        | Eastbound  | 1,755                             | 280                          | 260                           |
| Avenue           | Leg            | Westbound  | 1,910                             | 310                          | 293                           |

#### Note:

- 1. The AM and PM Peak Periods have been identified to be between 11:00am to 12:00pm and 12:00pm to 1:00pm respectively.
- 2. The majority of traffic flows along Horse Park Drive.

#### 3.4.2 Current Condition of Key Intersections

The key intersections have been modelled using SIDRA Intersection 9.1. The Thursday results have been modelled due to the higher traffic volumes across the three sites being experienced on the Thursday.

For consistency, the peak hours for intersection modelling have been assumed to be 8:00am - 9:00am and 5:15pm - 6:15pm which align to the general travel times for the average working day.

The intersections of Kingsland Parade and Bentley Place, and Kingsland Parade and Clarrie Hermes Drive have been modelled as a network due to their close proximity with results provided for the individual intersections only. The intersection of Overall Avenue and Horse Park Drive was not modelled in a network with the other intersections due to its proximity to the other intersections in this report.

A summary of the SIDRA Intersection 9.1 results are in the following sections. The results listed in this TIA include the level of service (LOS), degree of saturation (DOS), average queue length and average delay. These results provide a quantitative measure of the performance of the intersection for the period modelled.

The LOS is a rating from A (best operating conditions) to F (worst operating conditions) as described by Austroads. In accordance with the RTA Guide to Traffic Generating Developments (Version 2.2, 2022), a LOS A represents good operation of a roundabout while LOS F represents a roundabout which is at capacity. The LOS provided in the summary of results is based on the delay method for New South Wales. The LOS has been provided to allow authority analysis of the intersection in relation to intent of the ACT Government Transport Canberra and City Services Guidelines for Transport Impact Assessment (3.1 Version, April 2020). A description of the LOS for roundabouts is provided in Table 7.



#### **Table 7 LOS Summary for Roundabouts**

| LOS | Average Delay per Vehicle<br>(seconds per vehicle) | Roundabout Services Description                |
|-----|----------------------------------------------------|------------------------------------------------|
| А   | < 14                                               | Good operation                                 |
| В   | 15 to 28                                           | Good with acceptable delays and space capacity |
| С   | 29 to 42                                           | Satisfactory                                   |
| D   | 43 to 56                                           | Operating near capacity                        |
| E   | 57 to 70                                           | At capacity                                    |
| F   | > 70                                               | Over capacity                                  |

The DOS is the ratio of arrival flow of vehicles to the capacity of the leg of the intersection. The DOS has been provided to assist indicate the available capacity of the intersection/leg of the intersection.

The average queue length represents a line of vehicles waiting to proceed through an intersection including slow moving vehicles at the back of the queue. The average queue length has been provided to indicate potential effects on the surrounding road network.

The average delay, for the purpose of this TIA, is the control delay which accounts for the time lost during the negotiation of an intersection including all stop-start and slow down delays and stopping times. The average delay will be in line with the LOS provided. The average delay has been provided as a metric to show an increase in waiting times anticipated based on the results of the SIDRA Intersection 9.1 model.

Assumptions and adjustments for the SIDRA models in the following sections are as follows:

- Grading for the legs of the intersection have been left at 0% as no survey has been provided.
- Lane geometry accuracy has limitation due to the options available in the program. These have been modelled to reflect the conditions as reasonably practical.
- Initial queue demand has been set as 0.0 veh.
- No pedestrians have been modelled at the intersections to reflect observations made by Northrop on 15/12/2022. Northrop understand that pedestrians cross midblock at locations along Clarrie Hermes Drive and Kingsland Parade which is beyond the parameters of the modelling.
- Cyclists have not been modelled to reflect observations made by Northrop on 15/12/2022.



# 3.4.2.1 Current Traffic Conditions at the Intersection of Kingsland Parade, Dalkin Crescent and Bentley Place

For the purpose of this TIA, the intersection of Kingsland Parade, Dalkin Crescent and Bentley Place has been modelled within a network arrangement with the intersection of Kingsland Parade and Clarrie Hermes Drive.

Table 8 contains the summary of results from the SIDRA Intersection 9.1 model for the current conditions of the intersection of Kingsland Parade, Dalkin Crescent and Bentley Place.

#### **Table 8 Summary SIDRA Intersection Results**

| Road      | Leg   | Period | LOS | DOS  | Average<br>Queue<br>Length (m) | Average<br>Delay (s) |
|-----------|-------|--------|-----|------|--------------------------------|----------------------|
| Kingsland | North | AM     | А   | 0.17 | 3                              | 1.8                  |
| Parade    | North | PM     | А   | 0.18 | 3                              | 2.1                  |
| Bentley   | East  | AM     | А   | 0.12 | 1                              | 3.4                  |
| Place     | Lust  | PM     | А   | 0.19 | 3                              | 3.5                  |
| Kingsland | South | AM     | А   | 0.15 | 2                              | 1.7                  |
| Parade    | Couli | PM     | А   | 0.35 | 6                              | 2.1                  |
| Dalkin    | West  | AM     | А   | 0.08 | 1                              | 5.6                  |
| Crescent  | VVCSt | PM     | А   | 0.08 | 1                              | 6.2                  |

In line with the summary of the results from the current conditions:

- The intersection has good operation;
- The results for the intersection reflect the video imagery for the intersection for the day modelled.



# 3.4.2.2 Current Traffic Conditions at the Intersection of Kingsland Parade and Clarrie Hermes Drive

Northrop undertook site inspections to verify the model results compared with the traffic observed on 20/06/2023 between 8:30am and 9:05am and 28/06/2023 between 8:30am and 9:00am.

#### 3.4.2.2.1 20/06/2023

The observations on 20/06/2023 identified:

- There were no unexpected delays at the intersection of Clarrie Hermes Drive and Barton Highway for the Clarrie Hermes Drive leg of the intersection at approximately 8:30am;
- There were no unexpected delays on Clarrie Hermes Drive between Barton Highway and Overall Avenue at approximately 8:30am;
- Queuing along Overall Avenue was observed up to John Crawford Crescent (approximately 370m from Overall Avenue);
- Delay times along Overall Avenue demonstrated a behaviour likening to the LOS of F as described in the RTA Guide to Traffic Generating Developments Version 2.2 (October, 2022) section 4.2 (i.e. significant queuing observed);
- Delays at the intersection of Clarrie Hermes Drive and Overall Avenue were typically observed for the legs of Clarrie Hermes Drive East and Overall Avenue;
- Due to the roundabout arrangement for the intersection, the Westbound traffic along Clarrie Hermes Drive is required to give way to the queued up Overall Avenue traffic causing delays along Clarrie Hermes Drive;
- Delays along Clarrie Hermes for Westbound traffic queued beyond the intersection of Kingsland Parade and Clarrie Hermes Drive.



Figure 6 Intersection of Overall Avenue and Clarrie Hermes Drive Looking East



Figure 7 Overall Avenue between Powley Street and Carmody Street Looking South





Figure 8 Queuing Observed at the Intersection of Boyer Street and Overall Avenue



Figure 9 Queuing Observed at the Intersection of Kingsland Parade and Clarrie Hermes Drive Looking East

#### 3.4.2.2.2 28/06/2023

The observations on 28/06/2023 identified:

- There were no unexpected delays at the intersection of Clarrie Hermes Drive and Barton Highway for the Clarrie Hermes Drive leg of the intersection at approximately 8:30am;
- There were no unexpected delays on Clarrie Hermes Drive between Barton Highway and Overall Avenue at approximately 8:30am;
- Queuing was observed to the East, through and to the West of the intersection of Kinsland Parade and Clarrie Hermes Drive;
- The signalised pedestrian crossing on Clarrie Hermes Drive between Overall Avenue and Kingsland Parade contributed to delays along Clarrie Hernes Drive Westbound;
- Delays for vehicles traversing the intersection of Kingsland Parade and Clarrie Hermes Drive from Clarries Hermes Drive East were approximately 60 seconds;
- No unexpected delays were observed for vehicles entering the intersection from Kingsland Parade;





Figure 10 Intersection of Kingsland Parade and Clarrie Hermes Drive Looking West



Figure 12 Intersection of Kingsland Parade and Clarrie Hermes Drive Looking South



Figure 11 Intersection of Kingsland Parade and Clarrie Hermes Drive Looking East



Figure 13 Red Light Midblock on Clarrie Hermes Drive between Kingsland Parade and Overall Avenue Resulting in Delays

#### 3.4.2.2.3 Modelling of the Intersection of Kingsland Parade and Clarrie Hermes Drive

Based on the observations undertaken, Northrop have calibrated the SIDRA Intersection 9.1 Kingsland Parade and Clarrie Hermes AM model to reflect delays occurring from the queuing observed.

Calibration included:

- Changing the environment factor for Clarrie Hermes East traffic to 2.00;
- Changing the environment factor for Clarrie Kingsland Parade traffic to 1.25;
- Changing the capacity adjustment to -11.0%.



Table 9 contains the summary of results from the SIDRA Intersection 9.1 model for the current conditions of the intersection of Kingsland Parade and Clarrie Hermes Drive.

| Table 9 Summary SIDRA Intersection Results |  |
|--------------------------------------------|--|
|--------------------------------------------|--|

| Road                       | Leg   | Period | LOS | DOS  | Average<br>Queue<br>Length (m) | Average<br>Delay (s) |
|----------------------------|-------|--------|-----|------|--------------------------------|----------------------|
| Kingsland                  | North | AM     | А   | 0.42 | 8                              | 6.8                  |
| Parade                     |       | PM     | А   | 0.43 | 9                              | 6.1                  |
| Clarrie<br>Hermes<br>Drive | East  | AM     | E   | 1.03 | 137                            | 57.3                 |
|                            |       | PM     | А   | 0.58 | 14                             | 7.5                  |
| Playing<br>Field<br>Access | South | AM     | А   | 0.05 | 1                              | 9.0                  |
|                            |       | PM     | А   | 0.03 | 1                              | 8.0                  |
| Clarrie<br>Hermes<br>Drive | West  | AM     | А   | 0.41 | 9                              | 5.4                  |
|                            | VVESt | PM     | А   | 0.63 | 16                             | 6.0                  |

In line with the summary of the results from the current conditions:

- The intersection has good operation in the PM;
- The AM peak period results reflect the observations undertaken by Northrop in June, 2023;
- The PM peak period results reflect the video imagery for the intersection;
- The leg of Clarrie Hermes Drive East has a DOS of 1.03 and an average delay of 57.3 seconds indicating the leg is close to failure.

This TIA addresses the scope of a TIA as outlined in the ACT Government TCCS Guidelines for Transport Impact Assessment (Version 3.1, April 2020) as it provides commentary on the impact of the development on the surrounding intersections including the intersection of Kingsland Parade and Clarrie Hermes Drive (refer to Section 4 of this report).

Northrop acknowledges that there are external factors affecting this intersection as described by the observations undertaken by Northrop which are separate to the Casey Group Centre.

Northrop recommends that Roads ACT complete a study on the intersection to review the wider network issues in relation to the intersection of Kingsland Parade and Clarrie Hermes Drive separate to this TIA and implement appropriate outcomes as identified by their study.



## 3.4.2.3 Current Traffic Conditions at the Intersection of Horse Park Drive and Overall Avenue

Table 10 contains the summary of results from the SIDRA Intersection 9.1 model for the current conditions of the intersection of Horse Park Drive and Overall Avenue.

| Road                | Leg   | Period | LOS | DOS  | Average<br>Queue<br>Length (m) | Average<br>Delay (s) |
|---------------------|-------|--------|-----|------|--------------------------------|----------------------|
| Horse Park<br>Drive | North | AM     | А   | 0.87 | 48                             | 14.4                 |
|                     |       | PM     | А   | 0.55 | 13                             | 9.2                  |
| Newlop<br>Street    | East  | AM     | В   | 0.28 | 7                              | 15.1                 |
|                     |       | PM     | А   | 0.11 | 2                              | 6.5                  |
| Horse Park<br>Drive | South | AM     | А   | 0.56 | 14                             | 9.8                  |
|                     |       | PM     | В   | 0.88 | 49                             | 15.5                 |
| Overall<br>Avenue   | West  | AM     | А   | 0.35 | 6                              | 7.2                  |
|                     | vveat | PM     | А   | 0.57 | 15                             | 11.1                 |

#### Table 10 Summary SIDRA Intersection Results

In line with the summary of the results from the current conditions:

- The intersection has good operation;
- The results for the intersection reflect the video imagery for the intersection for the day modelled.



## 3.5 Carparking

There are approximately 412 publicly available car parking spaces along Kingsland Parade and within the on-grade parking on Block 10 Section 132, Casey. The breakdown of these car parking spaces is summarised in Sections 3.5.1 to 3.5.2 of this report.

#### 3.5.1 Kingsland Parade

The number of carparking spaces on Kingsland Parade are as follows:

- 2 x Disabled Parking Spaces;
- 31 x 90 Degree Indented Parking Bays (1P); and
- 3 x 3 Parallel Indented Parking Bays (Unrestricted).

#### 3.5.2 On-grade Parking on Block 10 Section 132, Casey

The number of carparking spaces on Block 10 Section 132, Casey are as follows:

- 12 x Disabled Parking Spaces;
- 366 x Car Parking Bays (a combination of all day parking, 3-hour parking, 1 hour parking and 30minute parking); and
- 21 x Motorcycle Bays.

#### 3.5.3 Car Parking Survey

A car and motorcycle parking survey was undertaken during the period from 24/11/2022 through to 26/11/2022. Various times were captured over the 3 days.

General observations from the photos taken from the survey include:

- No motorcycles were observed to be parked in the designated motorcycle parking on Block 10, Section 132 Casey across the 3 days during the survey periods;
- Parking along Kingsland Parade was almost at capacity during the survey during the survey periods and has not been further considered; and
- Parking on Block 3, Section 131 Casey was almost at capacity during the survey during the survey periods and has not been further considered.

It is noted that parking along Kingsland Parade and parking on Block 3, Section 131 Casey are within close proximity to Casey Market Town shops.

Table 11 provides a summary of the car park capacity on Block 10, Section 132 Casey during the survey period.



#### **Table 11 Car Parking Survey Summary**

| Day                    | Time         | No. Cars Parked | No. Available<br>Car Parking<br>Spaces | Percent<br>Available Car<br>Parking Spaces |
|------------------------|--------------|-----------------|----------------------------------------|--------------------------------------------|
|                        | 10:45am      | 137             | 241                                    | 63%                                        |
| Thursday               | 11:45am      | 151             | 227                                    | 60%                                        |
| 24/11/2022             | 12:35pm      | 176             | 202                                    | 53%                                        |
|                        | 1:30pm       | 169             | 209                                    | 55%                                        |
|                        | 2:00pm       | 171             | 207                                    | 54%                                        |
|                        | 3:00pm       | 127             | 251                                    | 66%                                        |
| Friday<br>25/11/2022   | 4:00pm       | 161             | 217                                    | 57%                                        |
|                        | 5:00pm       | 185             | 193                                    | 51%                                        |
|                        | 6:00pm       | 187             | 191                                    | 50%                                        |
|                        | 10:00am      | 180             | 198                                    | 47%                                        |
|                        | 11:00am      | 186             | 192                                    | 50%                                        |
|                        | 12:00 Midday | 202             | 176                                    | 46%                                        |
| Saturday<br>26/11/2022 | 1:00pm       | 215             | 163                                    | 43%                                        |
|                        | 2:00pm       | 189             | 189                                    | 50%                                        |
|                        | 3:00pm       | 182             | 196                                    | 51%                                        |
|                        | 4:00pm       | 149             | 229                                    | 60%                                        |

In line with the car and motorcycle parking survey undertaken:

- The Saturday was the busiest day at the car park;
- The least amount of car parking available during the surveyed times was 163 car parking spaces;
- The most amount of car parking available during the surveyed times was 251 on a Friday.

Figure 14 and Figure 15 showing the car park at its busiest time and quietest time surveyed respectively.





Figure 14 Car Parking Available Saturday 26/11/2022 1:00pm



Figure 15 Car Parking Available Friday 25/11/2022 3:00pm



#### 3.6 Public Transport

At the time of this report, there are two bus stops situated on Kingsland Parade (Stop ID 6109 and Stop ID 6110) as shown location E in Figure 16 and Location A in Figure 17. These bus stops serve Bus Routes 25, 26, 27 and 28.

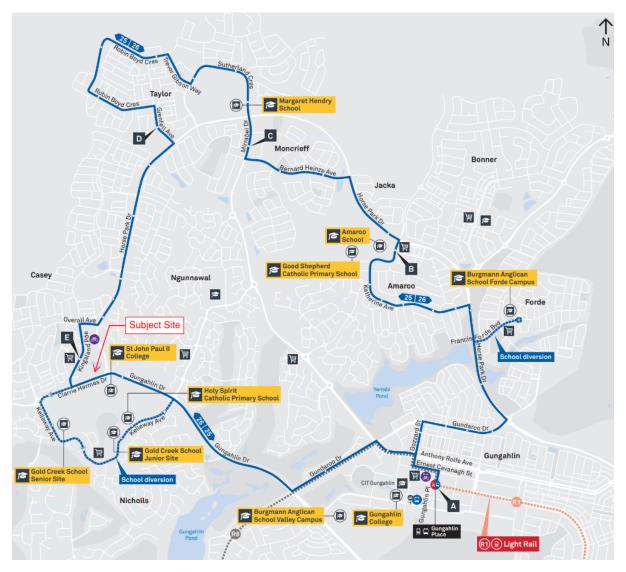



Figure 16 Route 25 and 26



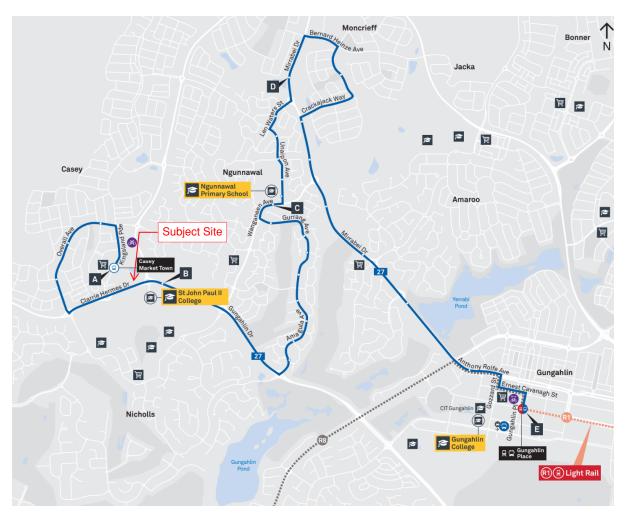



Figure 17 Route 27 and 28

Routes 25 and 26 stop at Kingsland Parade in line with the current weekday and weekend timetable. The buses depart approximately every 30 minutes during weekdays and approximately every hour on weekends in the morning and every 2 hours on for the rest of the weekend's timetable. It is noted that Routes 27 and 28 link with the Gungahlin Interchange.

Routes 27 and 28 stops at Kingsland Parade in line with the current weekday and weekend timetable. The buses depart approximately every 30 minutes during weekdays and approximately every hour on weekends in the morning and every 2 hours on for the rest of the weekend's timetable. It is noted that Routes 27 and 28 link with the Gungahlin Interchange.

Gungahlin Interchange provides connectivity to City Interchange and Belconnen through Transport Canberra's Rapid Routes as well as providing connection to other bus routes.



### 3.7 Active Travel

Public footpaths follow the verges of the streets surrounding the subject site providing access for both pedestrians and cyclists. Figure 18 is a marked-up extract from the Active Travel Practitioner Tool which indicates the existing pedestrian facilities in the vicinity of the subject site.

The public footpaths shown in Figure 18 link to the greater pedestrian footpath and active travel facilities for the greater Canberra region.

Underpasses linking Casey to Ngunnawal and Nichols are identified in Figure 18 by the red circles. The underpasses provide an alternate route for pedestrians, cyclists and users of other active travel types to miss negotiating Horse Park Drive and Clarrie Hermes Drive.

A signalised pedestrian crossing linking Casey to Nichols has been identified in Figure 18 by the orange circle. The signalised crossing enable pedestrian to cross Clarrie Hermes Drive in a controlled manner.



Figure 18 Pedestrian Footpath Infrastructure in the Vicinity of the Subject Site



#### 3.8 Accident Data

Accident data has been obtained from TCCS for the period of 1/01/2016 to 31/12/2020 for the following locations:

- Bentley Place between Kingsland Parade and the Subject Site
- Kingsland Parade between Clarrie Hermes Drive and Dalkin Crescent (North)

The data collected provides a typical 5-year behaviour for accidents within the abovementioned locations and is summarised in Table 12.

#### Table 12 Accident Data Along Clarrie Hermes Drive, Bentley Place, Kingsland Parade & Dalkin Crescent

| Location                                                  | Type of Accident | Number of<br>Accidents |
|-----------------------------------------------------------|------------------|------------------------|
| Intersection of Clarrie Hermes Drive and Kingsland Parade | Injury           | 0                      |
|                                                           | Property Damage  | 24                     |
| Midblock of Kingsland Parade between Bentley Place and    | Injury           | 0                      |
| Dalkin Crescent                                           | Property Damage  | 12                     |

#### Note:

- 1. No accidents have been recorded in the mid-block of Bentley Place.
- 2. No accidents have been recorded at the midblock of Kingsland Parade between Clarrie Hermes Drive and Bentley Place.
- 3. No accidents have been recorded at the intersection of Bentley Place, Kingsland Parade and Dalkin Crescent.
- 4. No accidents have been recorded at the intersection of Dalkin Crescent and Kingsland Parade.

It is noted that of the accidents recorded at the intersection of Clarrie Hermes Drive and Kingsland Parade, 58% were recorded to be rear end related (the most common crash type). Information as provided by the ACT Government does not allow a root cause for these accidents to be identified nor potential improvements to the area to be recommended. This would need to be completed as a separate study to this TIA.

It is noted that of the accidents recorded at the midblock of Kingsland Parade between Bentley Place and Dalkin Crescent, 42% were recorded to be related to leaving parking spaces (the most common crash type). Information as provided by the ACT Government does not allow a root cause for these accidents to be identified nor potential improvements to the area to be recommended. This would need to be completed as a separate study to this TIA.

Under the Federal Government's Black Spot Program, for an area to be defined as a Black Spot Road (midblock or intersection) requiring modification, the road in question is required to meet the following condition:

"For individual sites such as intersections, mid-block or short road sections, there should be a history of at least three casualty crashes over a five-year period. For lengths of road, there should be an average of 0.2 casualty crashes per kilometre per annum over the length in question over five years."

In line with the data presented in Table 12, there are no black spots along Clarrie Hermes Drive, Bentley Place, Kingsland Parade and Dalkin Crescent.



#### Proposed Development 4.

#### 4.1 **Development Description**

#### 4.1.1 **ACT Amendments to Development**

The following yield calaculations show the original development proposal compared to the revised proposal that came out of the ACAT process.

| YIELD CALCULATION              |     |        |  |  |  |  |
|--------------------------------|-----|--------|--|--|--|--|
| UNIT TYPE NO. UNITS % OF UNITS |     |        |  |  |  |  |
| · · · · · ·                    |     |        |  |  |  |  |
| 1BED                           | 12  | 7.1%   |  |  |  |  |
| 2BED                           | 91  | 53.5%  |  |  |  |  |
| 2BED ST                        | 31  | 18.2%  |  |  |  |  |
| 3BED                           | 13  | 7.6%   |  |  |  |  |
| 3BED ST                        | 6   | 3.5%   |  |  |  |  |
| COMMERCIAL                     | 13  | 7.6%   |  |  |  |  |
| STUDIO                         | 4   | 2.4%   |  |  |  |  |
| TOTAL NO. OF UNITS: 170        | 170 | 100.0% |  |  |  |  |

| YIELD CALCULATION              |     |        |  |  |  |  |  |
|--------------------------------|-----|--------|--|--|--|--|--|
| UNIT TYPE NO. UNITS % OF UNITS |     |        |  |  |  |  |  |
|                                |     |        |  |  |  |  |  |
| 1BED                           | 12  | 7.7%   |  |  |  |  |  |
| 2BED                           | 83  | 53.2%  |  |  |  |  |  |
| 2BED ST                        | 27  | 17.3%  |  |  |  |  |  |
| 3BED                           | 11  | 7.1%   |  |  |  |  |  |
| 3BED ST                        | 6   | 3.8%   |  |  |  |  |  |
| COMMERCIAL                     | 13  | 8.3%   |  |  |  |  |  |
| STUDIO                         | 4   | 2.6%   |  |  |  |  |  |
| TOTAL NO OF LINITS: 156        | 156 | 100.0% |  |  |  |  |  |

TOTAL NO. OF UNITS: 170 170

| STUDIO              | 4       | 2.6%   |
|---------------------|---------|--------|
| TOTAL NO. OF UNITS: | 156 156 | 100.0% |

#### 4.1.2 **Proposed Development**

In line with Cox Architecture drawing DA-01-02 Revision 5 dated 05/03/2024, the development is a mixed-use building which contains the following:

- 4 x studio apartments;
- 12 x 1 bedroom apartments;
- 83 x 2 bedroom apartments;
- 27 x 2 bedroom apartments with a study;
- 11 x 3 bedroom apartments;
- 6 x 3 bedroom apartments with a study;
- 13 adaptive commercial apartments (for the purpose of this study, they have been taken for office space); and
- 1,087m2 of retail space.

Northrop understand that the retail will be a split of approximately 487m2 shop style tenancies, 400m2 office style tenancies and 200m2 café/restaurant style tenancies.

The GFA of the adaptive commercial units is 1,359m2. Northrop understand that the adaptive commercial will be office space.

#### 4.2 Access

#### 4.2.1 **Driveway**

Driveway access to the proposed development is off Bentley Place.

With the arrangement of the site in line with Cox Architecture drawings DA-20-04 Rev 4 (05/03/2024) and DA-20-03 Rev 5 (05/03/2024), there is approximate 70m between the block boundary and the basement parking control point. This exceeds the requirements of AS2890.1 for minimum queue lengths at a car park with a control point at the entrance.

#### 4.3 **Compliance to Relevant Standards**

Sellick Consultants have provided a carpark compliance check mark up which can be found in Appendix D.



The car park compliance review has been completed against AS2890.1.

Sellick Consultants have assumed all spaces are User class 1 or 1A noting that all spaces have been nominated to be 2.4m wide.

In addition, the carpark compliance check mark up, Northrop note that there is currently sufficient head clearance for vehicle. The design team is to ensure this is maintained through the design process after the development application.

#### 4.4 Traffic Generation

The peak traffic generation has been based on the:

- ACT Government Environment and Sustainable Development Estate Development Code (28 August, 2020);
- RTA Guide to Traffic Generating Developments Version 2.2 (October, 2022); and
- NSW Government Transport Roads and Maritime Services Guide to Traffic Generating Developments Updated Traffic Surveys TDT 2013/04a (August, 2013).

The ACT Government Environment and Sustainable Development Estate Development Code (26 August, 2020) advises multiunit dwellings generate 6 vehicle movements per day per dwelling. As the code is silent on peak hour traffic generation and other type of peak vehicle generation, we have referred to the RTA Guide to Traffic Generating Developments Version 2.2 (October, 2022) and the NSW Government Transport Roads and Maritime Services Guide to Traffic Generating Developments Updated Traffic Surveys TDT 2013/04a (August, 2013).

The RTA Guide to Traffic Generating Developments Version 2.2 (October, 2022) provides traffic generation rates for restaurants (which also reflect a similar behaviour to cafes).

The NSW Government Transport Roads and Maritime Services Guide to Traffic Generating Developments Updated Traffic Surveys TDT 2013/04a (August, 2013) provides traffic generation rates for high density residential flat dwellings, office blocks and retail (assumed shopping centre in nature due to shops in vicinity of the development).

It is noted that for the purpose of this TIA and the traffic generation, the commercial adaptive units will be classified as office space.

The traffic generation from the development is summarized in Table 13.



#### Table 13 Development Traffic Generation

| Usage               | No. of  | Peak<br>Generation<br>Rate <sub>3</sub>         | Peak Traffic | Daily Traffic<br>Generation <sub>3</sub>         | Daily Traffic |
|---------------------|---------|-------------------------------------------------|--------------|--------------------------------------------------|---------------|
| Residential         | 143     | 0.67 vehicle<br>trips/unit <sub>1</sub>         | 96           | 6 vehicle<br>trips/unit₃                         | 858           |
| Restaurant/<br>Café | 200m2   | 5 vehicle trips<br>/100m2 GFA <sub>2</sub>      | 10           | 60 vehicle<br>trips/100m2<br>GFA <sub>2</sub>    | 120           |
| Office              | 1,759m2 | 1.57 vehicle<br>trips/100m2<br>GFA <sub>1</sub> | 28           | 18.17 vehicle<br>trips/100m2<br>GFA <sub>1</sub> | 247           |
| Shop                | 487m2   | 6.99 vehicle<br>trips/100m2<br>GFA              | 34           | 60.67 vehicle<br>trips/100m2<br>GFA <sub>1</sub> | 296           |

 As per NSW Government Transport Roads and Maritime Services Guide to Traffic Generating Developments Updated Traffic Surveys TDT 2013/04a (August, 2013) using the most conservative regional value.

- 2. As per RTA Guide to Traffic Generating Developments Version 2.2 (October, 2022).
- 3. As per the ACT Government Environment and Sustainable Development Estate Development Code (26 August, 2020).

#### 4.5 Traffic Distribution

As per section 3.4.1 of this report, the weekday peak hour periods for the intersection of Kingsland Parade and Bentley Place are:

- 8:00am 9:00am; and
- 5:15pm 6:15pm.

During the am peak period, it would be assumed the development would have 20% incoming traffic and 80% outgoing traffic.

During the pm peak period, it would be assumed the development would have 80% incoming traffic and 20% outgoing traffic.

With the acknowledgement of likely origins and destinations for vehicles in close proximity to the proposed development site, the following traffic distribution has been modelled as per Figure 19, Figure 20 and Figure 21. The traffic distribution shown in Figure 19 has taken into consideration the following sites which represent a local shopping hub, major public transport hub, education and the typical work locations in Canberra. It has been assumed that most drivers will travel East along Clarrie Hermes Drive to travel towards City/Belconnen/Woden/Fyshwick/Tuggernong:

- Gungahlin to the East;
- Gold Creek Highschool to the South;
- St John Paul II College to the South;
- Ngunnawal Primary School to the North East;



• City/Belconnen/Woden/Fyshwick/Tuggernong to the South.

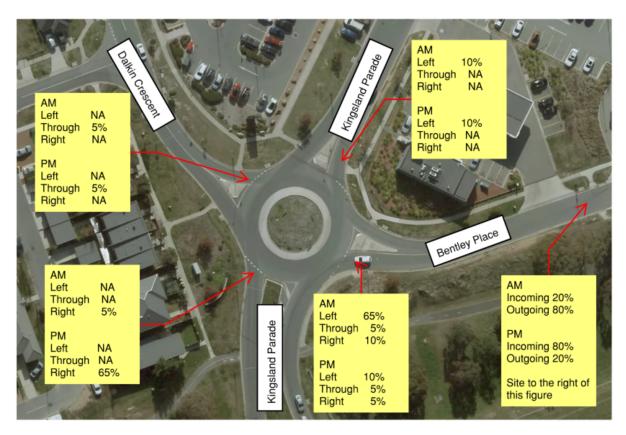



Figure 19 Proposed Development Traffic Distribution – Intersection of Kingsland Parade and Bentley Place





Figure 20 Proposed Development Traffic Distribution - Intersection of Clarrie Hermes Drive and Kingsland Parade





Figure 21 Proposed Development Traffic Distribution - Intersection of Horse Park Drive and Overall Avenue

#### 4.6 Traffic Modal Split

The proposed development generally will generate passenger vehicle trips based on its residential component.

It is acknowledged there will be heavy vehicle trips which service both the residential and commercial aspects of the development, however due to the anticipated small number of trips for heavy vehicles, these have not further been considered for modelling purposes.

#### 4.7 Traffic Impact

The performance of the key intersections have been reviewed for the development conditions and the future conditions.

For the purpose of this TIA, it has been assumed that the development year will be 2024 and the future conditions will be modelled in 2034.

The increase in traffic on the roads will increase by 2% per year as per the ACT Government TCCS Guidelines for Transport Impact Assessment (Version 3.1, April 2020).



#### 4.7.1 Development Conditions

#### 4.7.1.1 Development Traffic Conditions at the Intersection of Kingsland Parade, Dalkin Crescent and Bentley Place

The intersection of Kingsland Parade and Bentley Place has been modelled using SIDRA Intersection 9.1 for the development conditions (2024).

A summary of the results is available in Table 14.

#### Table 14 SIDRA Intersection Results for the Development Case

| Road               | Leg   | Period LOS |   | DOS  | Average<br>Queue<br>Length (m) | Average<br>Delay (s) |
|--------------------|-------|------------|---|------|--------------------------------|----------------------|
| Kingsland          | North | AM         | А | 0.19 | 3                              | 2.1                  |
| Parade             | North | PM         | А | 0.23 | 4                              | 2.8                  |
| Bentley            | East  | AM         | А | 0.24 | 3                              | 3.5                  |
| Place              | Lust  | PM         | А | 0.23 | 3                              | 3.6                  |
| Kingsland          | South | AM         | А | 0.17 | 3                              | 2.0                  |
| Parade             | Couli | PM         | А | 0.44 | 9                              | 3.0                  |
| Dalkin<br>Crescent | West  | AM         | А | 0.09 | 1                              | 5.7                  |
|                    | WOOL  | PM         | А | 0.10 | 2                              | 7.0                  |

From the results in Table 14, it can be seen that the intersection has good operation. The results in Table 14 indicate the development has an impact on the operation of the roundabout (refer to the results in Table 8), however the roundabout is in line with the ACT Government TCCS Guidelines for Transport Impact Assessment (Version 3.1, April 2020).

The ACAT changes had a minor impact decreasing the degree of saturation on all approaches, very minor impact on reducing queue lengths on two legs in the morning peak and a minor impact on reducing delays on the East, South and West legs.



#### 4.7.1.2 Development Traffic Conditions at the Intersection of Kingsland Parade and Clarrie Hermes Drive

The intersection of Kingsland Parade and Clarrie Hermes Drive has been modelled using SIDRA Intersection 9.1 for the development conditions (2024).

A summary of the results is available in Table 15.

#### Table 15 SIDRA Intersection Results for the Development Case

| Road              | Leg   | Period | LOS | DOS  | Average<br>Queue<br>Length (m) | Average<br>Delay (s) |
|-------------------|-------|--------|-----|------|--------------------------------|----------------------|
| Kingsland         | North | AM     | А   | 0.57 | 13                             | 8.5                  |
| Parade            | North | PM     | А   | 0.47 | 11                             | 6.6                  |
| Clarrie<br>Hermes | East  | AM     | F   | 1.09 | 181                            | 98.1                 |
| Drive             | Last  | PM     | А   | 0.65 | 17                             | 8.3                  |
| Clarrie<br>Hermes | South | AM     | А   | 0.05 | 1                              | 8.4                  |
| Drive             | South | PM     | А   | 0.03 | 1                              | 9.5                  |
| Clarrie           | West  | AM     | А   | 0.42 | 9                              | 5.2                  |
| Hermes<br>Drive   | WUO0L | PM     | А   | 0.69 | 21                             | 7.3                  |

From the results in Table 15, it can be seen that the intersection's performance has reduced from the current conditions. This is most notable for the Eastern leg of the intersection in the AM peak.

It is noted that the traffic not associated with the development has increased at the intersection for the period modelled in comparison with the current condition modelled in section 3.4.2.2.3 of this report.

The ACAT changes had a minor impact decreasing the degree of saturation on almost all approaches, decreasing the queue lengths on almost all approaches both in the morning and afternoon peaks. Similarly the average delays were decreased on almost all legs in the morning and afternoon peak.

As the roundabout is already over capacity as per the current condition modelled, small increases of traffic to the roundabout can disproportionately increase the delay experienced at the intersection (refer section 4.2.2 of the RTA Guide to Traffic Generating Developments Version 2.2 (October, 2022)).

Northrop recommends that Roads ACT complete a study on the intersection to review the wider network issues in relation to the intersection of Kingsland Parade and Clarrie Hermes Drive separate to this TIA and implement appropriate outcomes as identified by their study.



#### 4.7.1.3 Development Traffic Conditions at the Intersection of Horse Park Drive and Overall Avenue

The intersection of Horse Park Drive and Overall Avenue has been modelled using SIDRA Intersection 9.1 for the development conditions (2024).

A summary of the results is available in Table 16.

#### Table 16 SIDRA Intersection Results for the Development Case

| Road       | Leg   | Period LOS DOS |   | Average<br>Queue<br>Length (m) | Average<br>Delay (s) |      |
|------------|-------|----------------|---|--------------------------------|----------------------|------|
| Horse Park | North | AM             | В | 0.89                           | 56                   | 16.5 |
| Drive      | North | PM             | А | 0.56                           | 13                   | 9.3  |
| Newlop     | East  | AM             | В | 0.30                           | 8                    | 15.8 |
| Street     | Lust  | PM             | А | 0.11                           | 2                    | 6.6  |
| Horse Park | South | AM             | А | 0.58                           | 15                   | 10.1 |
| Drive      | South | PM             | В | 0.89                           | 54                   | 16.5 |
| Overall    | West  | AM             | А | 0.38                           | 7                    | 7.4  |
| Avenue     | WOOL  | РМ             | A | 0.59                           | 17                   | 11.9 |

From the results in Table 16, it can be seen that the intersection is operating good with acceptable delays and spare capacity. The results in Table 16 indicate the development has an impact on the operation of the roundabout (refer to Table 10), however the roundabout is in line with the ACT Government TCCS Guidelines for Transport Impact Assessment (Version 3.1, April 2020).

The ACAT changes had a minor impact decreasing the degree of saturation on all approaches, decreasing the queue lengths on all approaches both in the morning and afternoon peaks. Similarly, the average delays were decreased on all legs in the morning and afternoon peak.



#### 4.7.2 Future Conditions

## 4.7.2.1 Future Traffic Conditions at the Intersection of Kingsland Parade, Dalkin Crescent and Bentley Place

The intersection of Kingsland Parade and Bentley Place has been modelled using SIDRA Intersection 9.1 for the future conditions (2034).

For the purpose of the future conditions, the development traffic generation has remained the same as the 2024 model with the external traffic being increased by the 2% growth factor only.

A summary of the results is available in Table 17.

| Road      | Leg   | Period LOS |   | DOS  | Average<br>Queue<br>Length (m) | Average<br>Delay (s) |
|-----------|-------|------------|---|------|--------------------------------|----------------------|
| Kingsland | North | AM         | А | 0.24 | 4                              | 2.2                  |
| Parade    | North | PM         | А | 0.29 | 5                              | 2.9                  |
| Bentley   | East  | AM         | А | 0.28 | 4                              | 4.0                  |
| Place     | Last  | PM         | А | 0.29 | 5                              | 4.0                  |
| Kingsland | South | AM         | А | 0.21 | 3                              | 2.1                  |
| Parade    | South | PM         | А | 0.55 | 13                             | 3.2                  |
| Dalkin    | West  | AM         | А | 0.12 | 2                              | 6.1                  |
| Crescent  | VVCSL | PM         | А | 0.14 | 3                              | 8.4                  |

#### Table 17 SIDRA Intersection Results for the Future Case

From the results in Table 17, it can be seen that the intersection has good operation in the future case modelled inclusive of the development traffic.

The ACAT changes had a very minor impacts on the results generally.



#### 4.7.2.2 Future Traffic Conditions at the Intersection of Kingsland Parade and Clarrie Hermes Drive

The intersection of Kingsland Parade and Clarrie Hermes Drive has been modelled using SIDRA Intersection 9.1 for the future conditions (2034).

For the purpose of the future conditions, the development traffic generation has remained the same as the 2024 model with the external traffic being increased by the 2% growth factor only.

A summary of the results is available in Table 18.

#### Table 18 SIDRA Intersection Results for the Future Case

| Road              | Leg   | Period | LOS | DOS  | Average<br>Queue<br>Length (m) | Average<br>Delay (s) |
|-------------------|-------|--------|-----|------|--------------------------------|----------------------|
| Kingsland         | North | AM     | В   | 0.82 | 33                             | 21.3                 |
| Parade            | North | PM     | В   | 0.86 | 44                             | 26.9                 |
| Clarrie<br>Hermes | East  | AM     | F   | 1.32 | 476                            | 302.4                |
| Drive             | Last  | PM     | А   | 0.88 | 49                             | 12.9                 |
| Clarrie<br>Hermes | South | AM     | А   | 0.07 | 1                              | 9.1                  |
| Drive             | South | PM     | В   | 0.09 | 2                              | 18.8                 |
| Clarrie<br>Hermes | West  | AM     | А   | 0.54 | 13                             | 5.3                  |
| Hermes<br>Drive   | WOOL  | PM     | В   | 0.96 | 92                             | 21.2                 |

From the results in Table 18, it can be seen that the intersection modelled is over capacity in the AM period in the future case modelled inclusive of the development traffic. The PM period in the future period shows the that the intersection modelled has good operation with acceptable delays and spare capacity.

The ACAT changes had a very minor impacts on the results generally.



#### 4.7.2.3 Development Traffic Conditions at the Intersection of Horse Park Drive and Overall Avenue

The intersection of Horse Park Drive and Overall Avenue has been modelled using SIDRA Intersection 9.1 for the future conditions (2034).

For the purpose of the future conditions, the development traffic generation has remained the same as the 2023 model with the external traffic being increased by the 2% growth factor only.

A summary of the results is available in Table 19.

#### Table 19 SIDRA Intersection Results for the Future Case

| Road              | Leg   | Period LOS DOS |   | DOS  | Average<br>Queue<br>Length (m) | Average<br>Delay (s) |
|-------------------|-------|----------------|---|------|--------------------------------|----------------------|
| Horse Park        | North | AM             | F | 1.25 | 529                            | 239.1                |
| Drive             | North | PM             | А | 0.76 | 29                             | 12.3                 |
| Newlop            | East  | AM             | В | 0.45 | 13                             | 23.4                 |
| Street            |       | PM             | А | 0.20 | 5                              | 9.0                  |
| Horse Park        | South | AM             | А | 0.78 | 31                             | 14.5                 |
| Drive             | South | PM             | F | 1.26 | 508                            | 247.7                |
| Overall<br>Avenue | West  | AM             | А | 0.57 | 15                             | 10.0                 |
|                   | VVOOL | PM             | В | 0.80 | 31                             | 20.2                 |

From the results in Table 19, it can be seen that the intersection is over capacity due to the increased delays along Horse Park Drive. Due to the limited and consistent traffic generated from the proposed development, the saturation of the intersections would be from traffic generation from other origins and destinations.

The ACAT changes had a very minor impacts on the results generally.



#### 4.8 Parking

#### 4.8.1 Car Parking

Car parking generation has been reviewed for both the residential and commercial aspects for the building.

#### 4.8.1.1 Residential Car Parking Required

The ACT Planning & Land Authority Parking and Vehicular Access General Code (17 June, 2022) was reviewed to determine the number of car parking spaces required for the residential parking. As the block is located with a CZ1: Core Zone, the following car parking generation rates apply:

- One (1) parking space per single bedroom dwelling; and
- A minimum average provision of 1.5 spaces per two bedroom dwelling, provided that each two bedroom dwelling is allocated a minimum of one (1) parking space and each two (2) bedroom dwelling is allocated no more than two (2) parking spaces; or
- Two (2) parking spaces per two bedroom dwelling; and
- Two (2) parking spaces for each dwelling with three or more bedrooms; plus
- One (1) visitor space per four (4) dwellings or part thereof where a complex comprises four (4) or more dwellings.

Based upon the ACAT adjusted development the required number of parking spaces for the residential component of the development is:

 $16 \times 1$ space (one bedroom / studios) +  $110 \times 1.5$ spaces (2 bedroom units) +  $30 \times 2$ spaces (3 bedroom and commercial units) = 16 + 165 + 60 = 241 spaces

This results in 241 car parking spaces being required for the residents of the proposed development.

A total of 39 visitor car parking spaces are required for the development.

#### 4.8.1.2 Commercial Car Parking Required

Northrop understand that the retail will be a split of approximately 478m2 shop style tenancies, 400m2 office style tenancies and 200m2 café/restaurant style tenancies.

The GFA of the adaptive commercial units is 641m2. Northrop understand that the adaptive commercial will be office space.

The ACT Planning & Land Authority Parking and Vehicular Access General Code (17 June, 2022) describes the car parking generation rates for these uses are as follows:

- Restaurant: 10 car parking spaces per 100m2 GFA;
- Office: 2.5 car parking spaces per 100m2 GFA; and
- Shop: 5 car parking spaces per 100m2 GFA.

Based on the areas for each use, 70 car parking spaces would be required for the commercial area of the development.

#### 4.8.2 Car Parking Provided for the Development and Alternate Parking Locations

The proposed development contains 364 car parking spaces in line with drawing DA-01-02 revision 5 dated 05/03/2024 by Cox Architecture.

The total number of car parking spaces required for the development is 350 spaces.



For the purpose of this development, the residential visitor parking has been detailed as User class 1A.

Northrop note that visitors to the commercial tenancies for the development will not obtain access to the basement car park. Noting the ACT Planning & Land Authority Parking and Vehicular Access General Code (17 June, 2022) does not provide parking rates for visitors and operators for the above users, Northrop have assumed 50% of spaces provided will be for visitors (35 car parking spaces).

In line with Section 3.5 of this report, Block 10, Section 132 Casey will be able to accommodate the commercial visitor parking.

#### 4.8.3 Motorcycle Parking

The ACT Planning & Land Authority Parking and Vehicular Access General Code (17 June, 2022) nominates that 3 dedicated motorcycle/motor scooter parking spaces are required per 100 car parking spaces.

Based on 364 car parking spaces within the development, it would be anticipated that 11 dedicated motorcycle/motor scooter parking spaces are provided.

The proposed development contains 11 motorcycle parking spaces in line with drawing DA-01-02 revision 5 dated 05/03/2024 by Cox Architecture.

#### 4.8.4 Bicycle Parking

The ACT Planning & Land Authority Bicycle Parking General Code (October, 2013) was reviewed for the purpose of the proposed development. Based on this code, the following bicycle parking facilities are required:

- Residential 1 per apartment (assumed in the storage cage of sufficient size or apartment);
- Residential visitor 14 x class 3 spaces required;

We note that the individual commercial tenancies are unlikely to require class 1 bicycle parking, showers or lockers due to their individual sizes. If end of trip facilities are required for the commercial tenancies, the tenant is to allow for this in the fitout.

It is noted that the latest plans detail 8 bicycle parking spaces for visitors to the development, storage cages for the residents and 18 bicycle parking spaces within the basement which has a similar nature to class 2 bicycle parking (assuming these would be unavailable to the general public but will be available to residential visitors and employees).



### 5. Conclusion

Northrop Consulting Engineers Pty Ltd (Northrop) have been engaged by Jega to prepare a Traffic Impact Assessment (TIA) for the proposed development on Block 9 Section 132, Casey (referred to as to the subject site in this report).

This Traffic Impact Assessment Report has detailed the below:

- An introduction to the report and summary of the proposed development;
- A summary of the development site and nearby conditions;
- An investigation in the existing conditions of the site and key roads including:
  - Traffic Volumes and conditions at key intersections;
  - Public transport within the vicinity of the site;
  - Active travel within the vicinity of the site.
- A summary of the projected traffic and parking conditions from the proposed development and surrounding key roads and intersections including:
  - The trip generation, trip distribution, modal split and trip assignment for the site generated traffic;
  - The increase of traffic at the key intersections;
  - The car park generation on site against the amount of car parking required; and
  - Car park compliance commentary.
- A transportation analysis including:
  - Commentary on proposed site access locations;
  - Commentary on the SIDRA Intersections models completed by Northrop for the key intersections for the base case, development conditions and future conditions for the site; and
  - Commentary on the current accident data for the key roads near the site supplied from the Transport Canberra and City Services Directorate (TCCS).
- A summary of the findings regarding:
  - o Site accessibility;
  - Transportation impacts; and
  - Parking impacts.

This conclusion details:

- A summary of the findings regarding:
  - Site accessibility;
  - Transportation impacts; and
  - o Parking impacts.

The report has identified:

- The site access is off Bentley Place for both passenger vehicles and service vehicles;
- The site connects with active travel infrastructure which links the development with the greater Canberra region;
- There are 2 bus stops which are within close vicinity of the proposed development which provide connectivity to the area and Gungahlin Interchange. Gungahlin Interchange provides connectivity to City Interchange and Belconnen through Transport Canberra's Rapid Routes as well as providing connection to other bus routes;



- There are no black spots in close vicinity to the development;
- There is existing available car parking located on Block 10, Section 132 Casey and along Kingsland Parade which provides 418 car parking spaces and 21 motorcycle parking spaces to the area;
- The car park capacity survey undertaken for this report indicated there was at least 160 car parking spaces available in Block 10, Section 132 Casey during the busiest time surveyed;
- The intersection of Kingsland Parade and Bentley Place is at good operation at the base conditions, development conditions (2024) and future conditions (2034);
- The intersection of Clarrie Hermes Drive and Kingsland Parade operates good with acceptable delays and spare capacity in the AM peak period and has good operation in the PM peak period for the base conditions. For the development scenario (2024), the intersection is at capacity in the AM peak period and has good operation for the PM peak period. For the future scenario (2034), the intersection is over capacity in the AM peak period and operates good with acceptable delays and spare capacity in the PM peak period. Northrop recommends that Roads ACT complete a study on the conditions of the intersection of Kingsland Parade and Clarrie Hermes Drive separate to this TIA and implement appropriate outcomes as identified by their study;
- The intersection of Horse Park Drive and Overall Avenue is at good operation at the base conditions and development conditions (2024), however is at capacity for the future conditions (2034) due to the growth in traffic generation from origins and destinations other than the proposed development;
- The basement car park has capacity for 364 car parking spaces (which accounts for the parking generation for the development);
- Dedicated motorcycle/motor scooter parking spaces have been nominated on the architectural plans;
- Bicycle parking has been nominated for the proposed development for the residential component;
- If end of trip facilities are required for the commercial tenancies, the tenant is to allow for this in the fitout.



## Appendix A Response to NOD



CR220895\_BC02

07 August, 2023

SAP House Level 6 224 Bunda Street (PO Box 213) Canberra ACT 2608 02 6285 1822 canberra@northrop.com.au ABN 81 094 433 100

William Boughton Jega william@jega.com.au

Dear William,

#### Re: Block 9, Section 132 Casey Apartments Response to the Notice of Decision

Northrop Consulting Engineers (Northrop) have prepared this letter to address the Transport Canberra and City Services (TCCS) Traffic Engineering related comments with the Notice of Decision (NOD) for DA Number: 202241107 dated 01/05/2023.

Northrop note items addressed in this letter have been reflected in report CR220895\_EC02V2.0 as relevant.

This letter has listed the TCCS Traffic Engineering related comment in Bold Red text and Northrop's response in normal text.

Number referenced in this letter refer to the numbers from the NOD's Traffic Engineering related comments.

36. Section 3.4.2, (pg. 15-19) – From the SIDRA outputs in the attachments, it appears that the intersections were modelled as individual sites and not as a network. Given that the intersections of Bentley Place/Kingsland Parade/Dalkin Crescent and Kingsland Parade/Clarrie Hermes Drive are within close proximity to each other, these intersections should be modelled as a network to better model traffic flow-on effects.

The intersections of Bentley Place/Kingsland Parade/Dalkin Crescent and Kingsland Parade/Clarrie Hermes Drive have been modelled as a network with results provided for individual intersections only. Refer to sections 3.4.2 and 4.7 of report CR220895\_EC02V2.0.

37. Section 3.4.2, (pg. 15-19) – It is not clear how well the SIDRA models developed to assess the base year conditions have been calibrated. For example, Table 9 shows that the intersection of Kingsland Parade and Clarrie Hermes Drive is operating at LOS A in both the AM and PM peak. However, the commentary outlines delays were observed based on site observations which is not apparent in the SIDRA results. Hence, the proponent is to outline if the base model has been calibrated and validated to reflect observed queue lengths and delays during the AM and PM peak periods.

The SIDRA models for the intersections and periods modelled of:

- Kingsland Parade and Bentley Place AM;
- Kingsland Parade and Bentley Place PM;
- Kingsland Parade and Clarrie Hermes Drive PM;
- Horse Park Drive and Overall Avenue AM;
- Horse Park Drive and Overall Avenue PM;

Have produced results reflective of the video footage of when the traffic survey was completed.

Northrop undertook site observations to review the site conditions external to the intersection of Kingsland Parade and Clarrie Hermes Drive on 20/06/2023 and 28/06/2023 during the AM peak period.











Northrop have calibrated the model to the observations undertaken with details of the observations and calibration of the SIDRA Intersection model for the AM period provided in section 3.4.2.2.1 and 3.4.2.2.2 report CR220895\_EC02V2.0.

#### 38. Section 3.4.2, (pg. 15-19) – Why wasn't the Clarrie Hermes Drive/Overall Avenue/Kelleway Avenue intersection and the Gungahlin Drive/Clarrie Hermes Drive/Horse Park Drive intersection included in the analysis?

Northrop have outlined the condition of the intersection of Clarrie Hermes Drive and Overall Avenue within section 3.4.2.2 of the report. It is noted there was significant queuing along Overall Avenue displaying behaviour likening to the LOS of F as described in the RTA Guide to Traffic Generating Developments Version 2.2 (October, 2022) section 4.2 (i.e. significant queuing observed).

Northrop's observations note the roundabout is over capacity. As the roundabout is already over capacity, small increases of traffic to the roundabout can disproportionately increase the delay (refer section 4.2.2 of the RTA Guide to Traffic Generating Developments Version 2.2 (October, 2022)).

Modelling of the roundabout noting its current condition would provide an unreasonable outcome in terms of the impact of the development to the greater area.

Northrop recommends that Roads ACT complete a separate study to determine improvements to flow along Overall Avenue and Clarrie Hermes Drive and implement appropriate outcomes as identified.

The intersection of Gungahlin Drive, Clarrie Hermes Drive and Horse Park Drive is the intersection of 3 arterial roads (refer to the Active Travel Infrastructure Practitioner Tool accessed 19/07/2023). The project team assumes the arterial roads and intersection would have been designed to accommodate the predicted traffic loading of the area inclusive of new developments.

39. Section 4.3, pg. 27 – The proponent must undertake a carpark layout compliance check as per the requirements in AS2890.1. This includes a review of ramp grades, aisles widths, carpark dimensions and blind aisles.

A carpark layout compliance review has been undertaken by the civil engineer for the works.

# 40. Section 4.5, (pg.28-31) – What were the traffic distribution assumptions and percentages based on? For example, was ABS Journey to Work data used to derive traffic distribution percentages?

Traffic information was generally based on major local hubs, major transport infrastructure and typical major work locations within the Territory.

For intersuburb travel, the traffic distributions generally align with the intent of the Canberra Strategic Transport Model (as viewed online at tableau public).











It has been assumed that most drivers would turn left when leaving the development due to the number of likely destinations North and West of the development.

Site observations showed that there was major traffic congestion along Clarrie Hermes Drive between Kingsland Parade and Overall Avenue which would deter drivers from using this route (i.e. turning right at the intersection of Kingsland Parade and Clarrie Hermes Drive. This would deter most drivers from using this route.

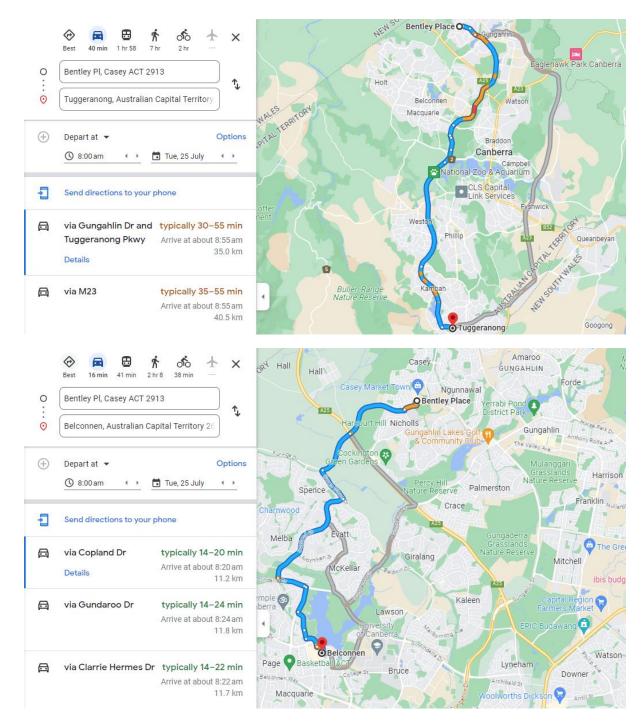
A review of Google Maps demonstrates there is limited difference to time for drivers with destinations within Gungahlin, City, Woden, Fyshwick, Tuggeranong, Belconnen and North Canberra (Dickson).







|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Kinleyside                                                                                                                 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 0<br>::<br>0 | Gungahlin, Australian Capital Territory 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Casey Amaroo                                                                                                               |
| ÷            | Depart at ▼         Options           ③ 8:00 am         € Tue, 25 July         € ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Casey Market Town                                                                                                          |
| Ð            | Send directions to your phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bentley Place                                                                                                              |
| ⊜            | via Gungahlin Dr and typically 7–14 min<br>Anthony Rolfe Ave 5.1 km<br>Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nton                                                                                                                       |
|              | via Mirrabei Dr typically 8–14 min<br>6.2 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aton & 5.7 km<br>Lens & Grasslands<br>Percy Hill<br>Nature Reserve<br>Palmerston                                           |
|              | via Gungahlin Dr andtypically 9–16 minThe Valley AveArrive at about 8:16 am5.7 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Crace Frank                                                                                                                |
| 0<br>∶<br>⊙  | Image: Section of the section of th | Bentley Place O Ngunnawal Forde<br>Nicholls Gungahlin<br>Charnwood Crace Franklin                                          |
| ÷            | Depart at ▼         Options           ③ 8:00 am         ▲         ■         Tue, 25 July         ▲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Holt BELCONNEN Hindu Temple<br>Florey canberra Kaleen                                                                      |
| 1            | Send directions to your phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hawker<br>College Belconnen B<br>Macquarie 24–50 min<br>1.4 km                                                             |
|              | via Barton Hwy/A25typically 22–50 minand NorthbourneArrive at about 8:50 amAve/A2316.4 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y<br>glo<br>WaCuda it<br>Li - Kit<br>Black<br>Mountain<br>Nature Reserve<br>Australian War Memorial                        |
| A            | via Gungahlin Dr typically 24–50 min<br>Arrive at about 8:50 am<br>21.4 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | National Arboretum Canberra Vational Museum City Canberra Vational Canberra Vational Museum City Campbell Fairbairn Golf ( |






|            | <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HEW SOUTHWALLS Casey Amaroo<br>Bentley Place O Gungahin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | Bentley PI, Casey ACT 2913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No <sup>41 3</sup> Bentley Place O Gungahin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0          | Woden Valley, Australian Capital Territory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26-50 min<br>27 km ₩21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $(\div)$   | Depart at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Holt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ð          | Send directions to your phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Macquarie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | via Tuggeranongtypically 26-45 minPkwyArrive at about 8:45 am<br>27.9 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Braddon<br>Canberra<br>Campbell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ē          | via Gungahlin Dr and<br>Tuggeranong Pkwy     typically 26–50 min<br>Arrive at about 8:50 am<br>27.0 km       Details     27.0 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Constant of the prior     Constant of t |
|            | via Gungahlin Dr typically 30–55 min<br>Arrive at about 8:55 am<br>26.0 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Westow<br>Woden Valley<br>E2<br>Http://www.setowerter.com/<br>B22<br>B22<br>B22<br>B22<br>B22<br>B22<br>B22<br>B22<br>B22<br>B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0<br><br>© | Image: Section of the section of th | Charnwood Crace Amaroo<br>Hall Casey Amaroo<br>Forde<br>Bentley.Place O<br>Nicholls Gungahlin<br>Harrison<br>Eaglehawk Park Canberra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ÷          | Depart at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or Melba<br>t BELCONNEN OF Hindu Temple<br>Florey canberra<br>Hawker<br>College Belconnen Luceborg Watson Mount Majura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ð          | Send directions to your phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Macquarie Bruce Lyneham Watsolf Mount Majufa<br>Nature Reserve Avonley Cottage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A          | via M23     typically 24-40 min       Details     Arrive at about 8:40 am       24.6 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Black<br>Mountain<br>Nature Reserve<br>Australian War Memorial<br>Canberra National                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ð          | via Barton Hwy/A25 typically 28–55 min<br>Arrive at about 8:55 am<br>23.2 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | an ect National Museum e Campbell Fairbain Golf Course<br>Autonal Zoo Australia<br>Aquarium Parliament House 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | via Gungahlin Dr typically 30 min to 1 hr<br>Arrive at about 9:00 am<br>28.1 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Royal Australian Mint Canperra<br>Curtin<br>Weston<br>Weston<br>Garran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

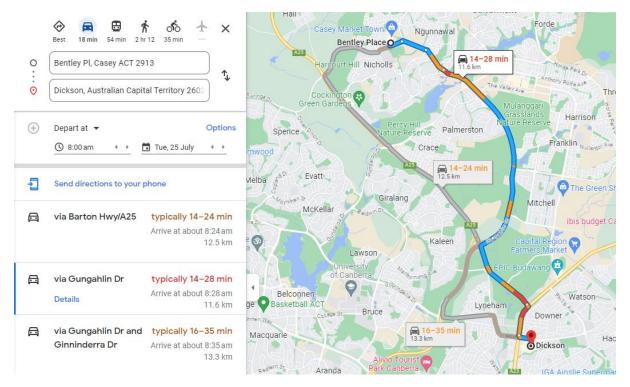




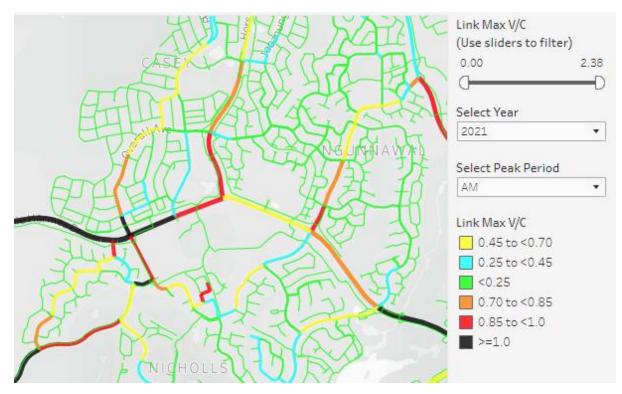








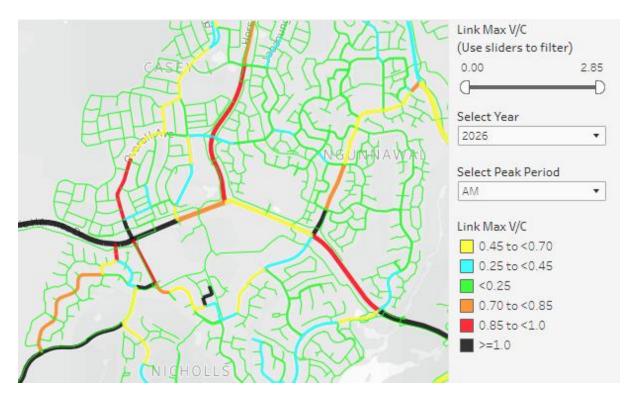










The Canberra Strategic Transport Model (as viewed online at tableau public) shows the 2021 model illustration that access to the West of the site along Clarrie Hermes Drive being over capacity for private vehicles. This is consistent with the 2026 model.











Based on the Google Maps review and the Canberra Strategic Transport Model (as viewed online at tableau public), there is not a major time difference between leaving the development and travelling East along Clarrie Hermes Drive rather than West and the predicted traffic along Clarrie Hermes Drive becomes worse to the West of the site in the midterm. Hence, the traffic distribution is reasonable for the purpose of the traffic impact assessment.

- 41. Section 4.7.1-Section 4.7.2 (pg.32-37) To determine if the development and future year model outputs are realistic, the accuracy of the base year models must first be determined. See point above regarding base year model calibration and validation. Noted. See response to 37.
- 42. Section 4.8.2, (pg.38) TCCS appreciates the parking surveys undertaken as outlined in Section 3.5.3. Although the surveys show that currently, there is capacity to accommodate overflow parking, the reliance of 86 carparks at Block 10, Section 132 is significant. The Gungahlin region has been undergoing rapid expansion with the population expected to increase further. For example, the adjacent Blocks 12 and 13, Section 132 Casey are due for land release and those sites may also require a need for effective parking.

off-site public parking. Hence, the reliance on 86 spaces off-site spaces cannot be supported.
The development has been reduced in size and scale with the basement parking remaining the same quantum. This has allowed for all commercial long stay parking and residential

The project team has assumed short stay commercial parking will be catered for within Block 10, Section 132 Casey.

As per the car parking survey undertaken and detailed in section 3.5.3 of the report, at the time of the survey there was 163 car parking spaces available. The required number of car parking for short term commercial parking is less than this (and less than the previously proposed 86 car parking spaces).





parking to be catered for within the development.







Prepared by,

Nicholas Grinter Civil Engineer MIEAust

Reviewed by:

100 10

Joey Wiltshire Senior Civil Engineer MIEAust







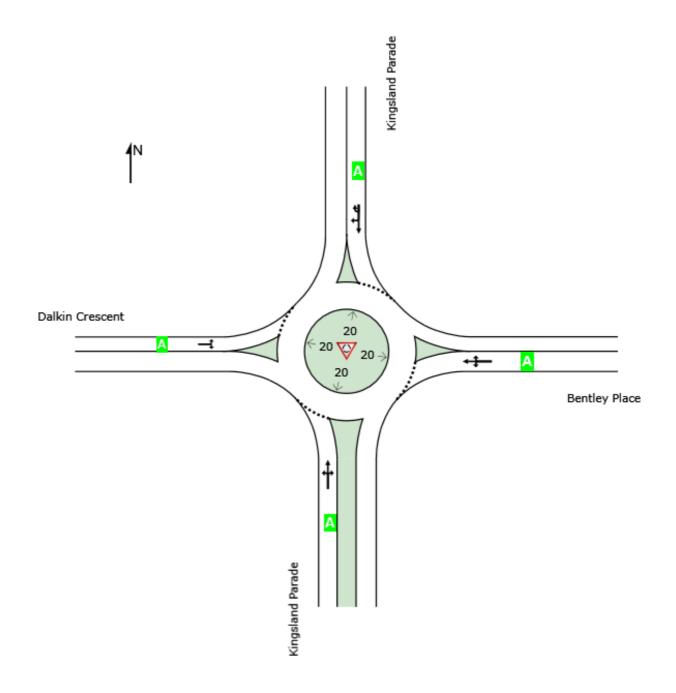


## Appendix B SIDRA Results

#### **USER REPORT FOR SITE**

Project: 2023 ACAT Revision 1.3 Casey Apartments (02May24)

Output produced by SIDRA INTERSECTION Version: 9.1.6.228


#### Template: Northrop Standard

#### W Site: 101A [AM Base 2022 Kingsland Parade and Bentley Place Weekday Peak 8:00am -9:00am (Site Folder: Base)]

New Site Site Category: (None) Roundabout

#### LOS Summary

|     |       | Appro | aches        |   | Intersection |
|-----|-------|-------|--------------|---|--------------|
|     | South | West  | Intersection |   |              |
| LOS | А     | А     | А            | А | А            |



Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

| Vehi | cle Movemen | t Performanc     | e:          |      |       |          |                    |     |      |        |       |
|------|-------------|------------------|-------------|------|-------|----------|--------------------|-----|------|--------|-------|
| Mov  | Turn Mov    | Demand           | Arrival     |      |       | Level of | 95% Back (         |     | Eff. | Aver.  | Aver. |
| ID   | Class       | Flows            | Flows       | Satn | Delay | Service  | Queue<br>[ Veh. Di | Que |      | No. of | Speed |
|      |             | [ Total HV ] [ ] | iotar fiv j |      |       |          | [ven. Di           | stj | Rate | Cycles |       |

|        |         |            | veh/h | %         | veh/h  | %         | v/c   | sec  |       | veh | m   |      |      |      | km/h    |
|--------|---------|------------|-------|-----------|--------|-----------|-------|------|-------|-----|-----|------|------|------|---------|
| South  | : King  | sland Para |       |           | VCH/II | 70        | 0/0   | -300 |       |     |     |      |      |      | KITI/TI |
| 1      | L2      | All MCs    | 32    | 13.3      | 32     | 13.3      | 0.153 | 2.0  | LOS A | 0.8 | 5.6 | 0.17 | 0.24 | 0.17 | 37.7    |
| 2      | T1      | All MCs    | 165   | 5.1       | 165    | 5.1       | 0.153 | 1.4  | LOS A | 0.8 | 5.6 | 0.17 | 0.24 | 0.17 | 37.4    |
| 3      | R2      | All MCs    | 12    | 0.0       | 12     | 0.0       | 0.153 | 5.7  | LOS A | 0.8 | 5.6 | 0.17 | 0.24 | 0.17 | 33.6    |
| Appro  | bach    |            | 208   | 6.1       | 208    | 6.1       | 0.153 | 1.7  | LOS A | 0.8 | 5.6 | 0.17 | 0.24 | 0.17 | 37.3    |
| East:  | Bentle  | ey Place   |       |           |        |           |       |      |       |     |     |      |      |      |         |
| 4      | L2      | All MCs    | 97    | 2.2       | 97     | 2.2       | 0.117 | 2.9  | LOS A | 0.5 | 3.7 | 0.38 | 0.45 | 0.38 | 31.7    |
| 5      | T1      | All MCs    | 13    | 0.0       | 13     | 0.0       | 0.117 | 2.3  | LOS A | 0.5 | 3.7 | 0.38 | 0.45 | 0.38 | 37.0    |
| 6      | R2      | All MCs    | 20    | 5.3       | 20     | 5.3       | 0.117 | 6.7  | LOS A | 0.5 | 3.7 | 0.38 | 0.45 | 0.38 | 35.5    |
| Appro  | bach    |            | 129   | 2.4       | 129    | 2.4       | 0.117 | 3.4  | LOS A | 0.5 | 3.7 | 0.38 | 0.45 | 0.38 | 33.6    |
| North  | : Kings | sland Para | ade   |           |        |           |       |      |       |     |     |      |      |      |         |
| 8      | T1      | All MCs    | 209   | 4.5       | 209    | 4.5       | 0.172 | 1.5  | LOS A | 0.9 | 6.4 | 0.22 | 0.24 | 0.22 | 37.1    |
| 9      | R2      | All MCs    | 11    | 0.0       | 11     | 0.0       | 0.172 | 5.8  | LOS A | 0.9 | 6.4 | 0.22 | 0.24 | 0.22 | 38.0    |
| 9u     | U       | All MCs    | 4     | 100.<br>0 | 4      | 100.<br>0 | 0.172 | 8.1  | LOS A | 0.9 | 6.4 | 0.22 | 0.24 | 0.22 | 37.2    |
| Appro  | bach    |            | 224   | 6.1       | 224    | 6.1       | 0.172 | 1.8  | LOS A | 0.9 | 6.4 | 0.22 | 0.24 | 0.22 | 37.1    |
| West   | Dalki   | n Crescen  | t     |           |        |           |       |      |       |     |     |      |      |      |         |
| 10     | L2      | All MCs    | 25    | 0.0       | 25     | 0.0       | 0.080 | 2.8  | LOS A | 0.4 | 3.1 | 0.40 | 0.52 | 0.40 | 36.6    |
| 12     | R2      | All MCs    | 63    | 0.0       | 63     | 0.0       | 0.080 | 6.7  | LOS A | 0.4 | 3.1 | 0.40 | 0.52 | 0.40 | 35.1    |
| Appro  | bach    |            | 88    | 0.0       | 88     | 0.0       | 0.080 | 5.6  | LOS A | 0.4 | 3.1 | 0.40 | 0.52 | 0.40 | 35.7    |
| All Ve | hicles  |            | 651   | 4.5       | 651    | 4.5       | 0.172 | 2.6  | LOS A | 0.9 | 6.4 | 0.26 | 0.32 | 0.26 | 36.4    |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Lane Use            | ∟ane Use and Performance |        |         |     |       |              |               |                |                     |                        |     |                |                |                  |     |
|---------------------|--------------------------|--------|---------|-----|-------|--------------|---------------|----------------|---------------------|------------------------|-----|----------------|----------------|------------------|-----|
|                     | Dem<br>Flo<br>[ Total    | WS     | Arrival |     | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% Ba<br>Que<br>[ Veh |     | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. B |     |
|                     | veh/h                    | %      | veh/h   | %   | veh/h | v/c          | %             | sec            |                     | [ 0011                 | m   |                | m              | %                | %   |
| South: Kin          | igsland                  | Parade | 9       |     |       |              |               |                |                     |                        |     |                |                |                  |     |
| Lane 1 <sup>d</sup> | 208                      | 6.1    | 208     | 6.1 | 1359  | 0.153        | 100           | 1.7            | LOS A               | 0.8                    | 5.6 | Full           | 70             | 0.0              | 0.0 |
| Approach            | 208                      | 6.1    | 208     | 6.1 |       | 0.153        |               | 1.7            | LOS A               | 0.8                    | 5.6 |                |                |                  |     |
| East: Bent          | tley Plac                | e      |         |     |       |              |               |                |                     |                        |     |                |                |                  |     |
| Lane 1 <sup>d</sup> | 129                      | 2.4    | 129     | 2.4 | 1106  | 0.117        | 100           | 3.4            | LOS A               | 0.5                    | 3.7 | Full           | 95             | 0.0              | 0.0 |
| Approach            | 129                      | 2.4    | 129     | 2.4 |       | 0.117        |               | 3.4            | LOS A               | 0.5                    | 3.7 |                |                |                  |     |
| North: Kin          | gsland F                 | Parade | •       |     |       |              |               |                |                     |                        |     |                |                |                  |     |
| Lane 1 <sup>d</sup> | 224                      | 6.1    | 224     | 6.1 | 1307  | 0.172        | 100           | 1.8            | LOS A               | 0.9                    | 6.4 | Full           | 300            | 0.0              | 0.0 |
| Approach            | 224                      | 6.1    | 224     | 6.1 |       | 0.172        |               | 1.8            | LOS A               | 0.9                    | 6.4 |                |                |                  |     |
| West: Dall          | kin Cres                 | cent   |         |     |       |              |               |                |                     |                        |     |                |                |                  |     |
| Lane 1 <sup>d</sup> | 88                       | 0.0    | 88      | 0.0 | 1107  | 0.080        | 100           | 5.6            | LOS A               | 0.4                    | 3.1 | Full           | 420            | 0.0              | 0.0 |
| Approach            | 88                       | 0.0    | 88      | 0.0 |       | 0.080        |               | 5.6            | LOS A               | 0.4                    | 3.1 |                |                |                  |     |

| All      | 651 | 4.5 | 651 | 4.5 | 0.172 | 2.6 LOS A | 0.9 | 6.4 |
|----------|-----|-----|-----|-----|-------|-----------|-----|-----|
| Vehicles |     |     |     |     |       |           |     |     |

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

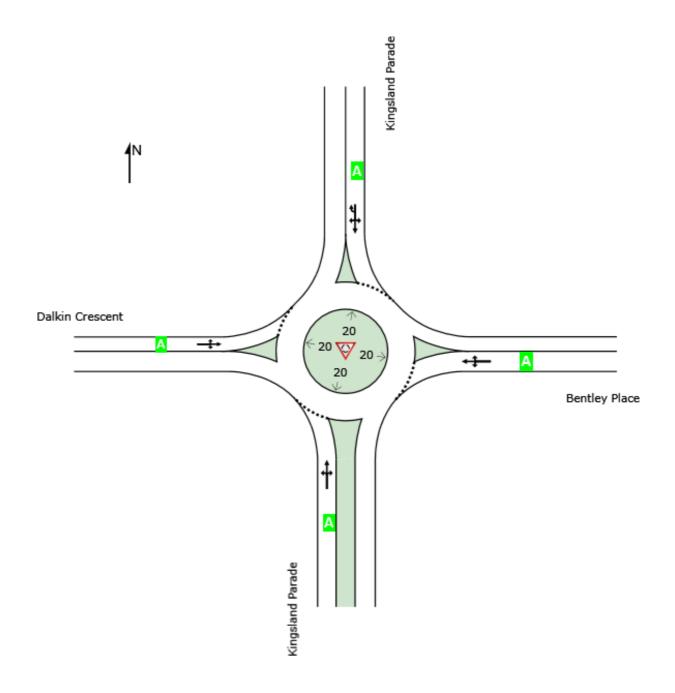
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.


d Dominant lane on roundabout approach

## 

New Site Site Category: (None) Roundabout

#### LOS Summary

|     |       | Appro | aches |      | Intersection |
|-----|-------|-------|-------|------|--------------|
|     | South | East  | North | West | Intersection |
| LOS | А     | А     | А     | А    | А            |



Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

| Vehi | cle Movemen | t Performanc              | e                   |      |       |          |                |             |       |      |                  |       |
|------|-------------|---------------------------|---------------------|------|-------|----------|----------------|-------------|-------|------|------------------|-------|
| Mov  | Turn Mov    | Demand                    | Arrival             |      |       | Level of | 95% Ba         |             | Prop. | Eff. | Aver.            | Aver. |
| ID   | Class       | Flows<br>[ Total HV ] [ ] | Flows<br>[otal HV ] | Satn | Delay | Service  | Quei<br>[ Veh. | ue<br>Dist] | Que   |      | No. of<br>Cycles | Speed |

|        |          |            | veh/h | %    | veh/h | %    | v/c   | sec |       | veh | m    |      |      |      | km/h |
|--------|----------|------------|-------|------|-------|------|-------|-----|-------|-----|------|------|------|------|------|
| South  | n: King  | sland Para |       |      |       |      |       |     |       |     |      |      |      |      |      |
| 1      | L2       | All MCs    | 55    | 0.0  | 55    | 0.0  | 0.353 | 2.2 | LOS A | 2.2 | 15.5 | 0.29 | 0.29 | 0.29 | 37.2 |
| 2      | T1       | All MCs    | 382   | 1.7  | 382   | 1.7  | 0.353 | 1.7 | LOS A | 2.2 | 15.5 | 0.29 | 0.29 | 0.29 | 36.7 |
| 3      | R2       | All MCs    | 40    | 2.6  | 40    | 2.6  | 0.353 | 6.0 | LOS A | 2.2 | 15.5 | 0.29 | 0.29 | 0.29 | 32.3 |
| Appro  | bach     |            | 477   | 1.5  | 477   | 1.5  | 0.353 | 2.1 | LOS A | 2.2 | 15.5 | 0.29 | 0.29 | 0.29 | 36.5 |
| East:  | Bentle   | ey Place   |       |      |       |      |       |     |       |     |      |      |      |      |      |
| 4      | L2       | All MCs    | 152   | 0.7  | 152   | 0.7  | 0.190 | 2.9 | LOS A | 0.9 | 6.3  | 0.39 | 0.45 | 0.39 | 31.6 |
| 5      | T1       | All MCs    | 23    | 0.0  | 23    | 0.0  | 0.190 | 2.3 | LOS A | 0.9 | 6.3  | 0.39 | 0.45 | 0.39 | 36.9 |
| 6      | R2       | All MCs    | 39    | 2.7  | 39    | 2.7  | 0.190 | 6.7 | LOS A | 0.9 | 6.3  | 0.39 | 0.45 | 0.39 | 35.4 |
| Appro  | bach     |            | 214   | 1.0  | 214   | 1.0  | 0.190 | 3.5 | LOS A | 0.9 | 6.3  | 0.39 | 0.45 | 0.39 | 33.7 |
| North  | : Kings  | sland Para | de    |      |       |      |       |     |       |     |      |      |      |      |      |
| 7      | L2       | All MCs    | 2     | 0.0  | 2     | 0.0  | 0.183 | 2.0 | LOS A | 0.9 | 6.7  | 0.21 | 0.27 | 0.21 | 36.9 |
| 8      | T1       | All MCs    | 209   | 3.0  | 209   | 3.0  | 0.183 | 1.5 | LOS A | 0.9 | 6.7  | 0.21 | 0.27 | 0.21 | 37.0 |
| 9      | R2       | All MCs    | 23    | 0.0  | 23    | 0.0  | 0.183 | 5.8 | LOS A | 0.9 | 6.7  | 0.21 | 0.27 | 0.21 | 37.9 |
| 9u     | U        | All MCs    | 8     | 50.0 | 8     | 50.0 | 0.183 | 7.7 | LOS A | 0.9 | 6.7  | 0.21 | 0.27 | 0.21 | 37.3 |
| Appro  | bach     |            | 243   | 4.3  | 243   | 4.3  | 0.183 | 2.1 | LOS A | 0.9 | 6.7  | 0.21 | 0.27 | 0.21 | 37.1 |
| West   | : Dalkiı | n Crescen  | t     |      |       |      |       |     |       |     |      |      |      |      |      |
| 10     | L2       | All MCs    | 36    | 0.0  | 36    | 0.0  | 0.076 | 4.5 | LOS A | 0.4 | 3.1  | 0.60 | 0.59 | 0.60 | 36.4 |
| 11     | T1       | All MCs    | 2     | 0.0  | 2     | 0.0  | 0.076 | 4.1 | LOS A | 0.4 | 3.1  | 0.60 | 0.59 | 0.60 | 35.4 |
| 12     | R2       | All MCs    | 28    | 0.0  | 28    | 0.0  | 0.076 | 8.4 | LOS A | 0.4 | 3.1  | 0.60 | 0.59 | 0.60 | 34.9 |
| Appro  | bach     |            | 66    | 0.0  | 66    | 0.0  | 0.076 | 6.2 | LOS A | 0.4 | 3.1  | 0.60 | 0.59 | 0.60 | 35.9 |
| All Ve | hicles   |            | 1000  | 2.0  | 1000  | 2.0  | 0.353 | 2.7 | LOS A | 2.2 | 15.5 | 0.31 | 0.34 | 0.31 | 36.2 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Lane Use            | e and P                          | erfor  | mance   | l.    |       |              |               |                |                     |                        |      |                |                |                  |     |
|---------------------|----------------------------------|--------|---------|-------|-------|--------------|---------------|----------------|---------------------|------------------------|------|----------------|----------------|------------------|-----|
|                     | Dem<br>Flo <sup>r</sup><br>Total | WS     | Arrival | Flows | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% Ba<br>Que<br>[ Veh |      | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. B |     |
|                     | veh/h                            | %      | veh/h   | %     | veh/h | v/c          | %             | sec            |                     | [ ven                  | m    |                | m              | %                | %   |
| South: Kin          | igsland                          | Parade | 9       |       |       |              |               |                |                     |                        |      |                |                |                  |     |
| Lane 1 <sup>d</sup> | 477                              | 1.5    | 477     | 1.5   | 1350  | 0.353        | 100           | 2.1            | LOS A               | 2.2                    | 15.5 | Full           | 70             | 0.0              | 0.0 |
| Approach            | 477                              | 1.5    | 477     | 1.5   |       | 0.353        |               | 2.1            | LOS A               | 2.2                    | 15.5 |                |                |                  |     |
| East: Bent          | tley Plac                        | e      |         |       |       |              |               |                |                     |                        |      |                |                |                  |     |
| Lane 1 <sup>d</sup> | 214                              | 1.0    | 214     | 1.0   | 1126  | 0.190        | 100           | 3.5            | LOS A               | 0.9                    | 6.3  | Full           | 95             | 0.0              | 0.0 |
| Approach            | 214                              | 1.0    | 214     | 1.0   |       | 0.190        |               | 3.5            | LOS A               | 0.9                    | 6.3  |                |                |                  |     |
| North: Kin          | gsland F                         | Parade |         |       |       |              |               |                |                     |                        |      |                |                |                  |     |
| Lane 1 <sup>d</sup> | 243                              | 4.3    | 243     | 4.3   | 1331  | 0.183        | 100           | 2.1            | LOS A               | 0.9                    | 6.7  | Full           | 300            | 0.0              | 0.0 |
| Approach            | 243                              | 4.3    | 243     | 4.3   |       | 0.183        |               | 2.1            | LOS A               | 0.9                    | 6.7  |                |                |                  |     |
| West: Dall          | kin Cres                         | cent   |         |       |       |              |               |                |                     |                        |      |                |                |                  |     |
| Lane 1 <sup>d</sup> | 66                               | 0.0    | 66      | 0.0   | 873   | 0.076        | 100           | 6.2            | LOS A               | 0.4                    | 3.1  | Full           | 420            | 0.0              | 0.0 |

| Approach        | 66   | 0.0 | 66   | 0.0 | 0.076 | 6.2 | LOS A | 0.4 | 3.1  |  |
|-----------------|------|-----|------|-----|-------|-----|-------|-----|------|--|
| All<br>Vehicles | 1000 | 2.0 | 1000 | 2.0 | 0.353 | 2.7 | LOS A | 2.2 | 15.5 |  |

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

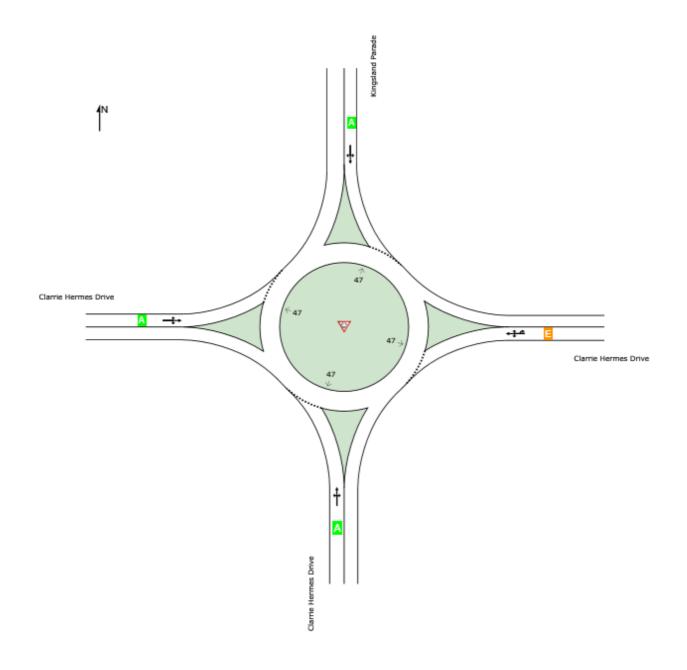
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.


d Dominant lane on roundabout approach

#### W Site: 101C [AM Base 2022 Kingsland Parade and Clarrie Hermes Drive Weekday Peak 8:00am - 9:00am (Site Folder: Base)]

NA Site Category: (None) Roundabout

#### LOS Summary

|     |       | Appro | aches |      | Intersection |
|-----|-------|-------|-------|------|--------------|
|     | South | East  | North | West | Intersection |
| LOS | А     | Е     | А     | А    | В            |



Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

| Vehi | cle Movemer | t Performanc     | e          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |        |       |
|------|-------------|------------------|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------|------|--------|-------|
| Mov  | Turn Mov    | Demand           | Arrival    | Deg. | Aver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level of | 95% Back O | f Prop. | Eff. | Aver.  | Aver. |
| ID   | Class       | Flows            | Flows      | Satn | Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Service  | Queue      | Que     | Stop | No. of | Speed |
|      |             | [ Total HV ] [ ] | Fotal HV ] |      | , in the second s |          | [Veh. Dis  | i]      | Rate | Cycles |       |

|        |          |            | veh/h | %    | veh/h   | %    | v/c   | sec  |       | veh  | m     |      |      |      | km/h    |
|--------|----------|------------|-------|------|---------|------|-------|------|-------|------|-------|------|------|------|---------|
| South  | n: Cları | rie Herme  |       |      | VOII/II | 70   | 0,0   | 000  |       | Voli |       |      |      |      | INTR/TT |
| 1      | L2       | All MCs    | 6     | 0.0  | 6       | 0.0  | 0.045 | 4.7  | LOS A | 0.3  | 2.1   | 0.78 | 0.67 | 0.78 | 39.7    |
| 2      | T1       | All MCs    | 4     | 0.0  | 4       | 0.0  | 0.045 | 3.5  | LOS A | 0.3  | 2.1   | 0.78 | 0.67 | 0.78 | 33.9    |
| 3      | R2       | All MCs    | 24    | 0.0  | 24      | 0.0  | 0.045 | 10.5 | LOS A | 0.3  | 2.1   | 0.78 | 0.67 | 0.78 | 39.4    |
| Appro  | bach     |            | 35    | 0.0  | 35      | 0.0  | 0.045 | 8.6  | LOS A | 0.3  | 2.1   | 0.78 | 0.67 | 0.78 | 39.1    |
| East:  | Clarrie  | e Hermes   | Drive |      |         |      |       |      |       |      |       |      |      |      |         |
| 4      | L2       | All MCs    | 28    | 0.0  | 28      | 0.0  | 1.034 | 56.5 | LOS E | 46.2 | 339.3 | 1.00 | 1.61 | 2.38 | 22.0    |
| 5      | T1       | All MCs    | 655   | 5.5  | 655     | 5.5  | 1.034 | 56.8 | LOS E | 46.2 | 339.3 | 1.00 | 1.61 | 2.38 | 27.6    |
| 6      | R2       | All MCs    | 35    | 18.2 | 35      | 18.2 | 1.034 | 65.4 | LOS E | 46.2 | 339.3 | 1.00 | 1.61 | 2.38 | 18.5    |
| 6u     | U        | All MCs    | 6     | 0.0  | 6       | 0.0  | 1.034 | 67.5 | LOS E | 46.2 | 339.3 | 1.00 | 1.61 | 2.38 | 27.7    |
| Appro  | bach     |            | 724   | 5.8  | 724     | 5.8  | 1.034 | 57.3 | LOS E | 46.2 | 339.3 | 1.00 | 1.61 | 2.38 | 27.0    |
| North  | : King   | sland Para | ade   |      |         |      |       |      |       |      |       |      |      |      |         |
| 7      | L2       | All MCs    | 179   | 5.9  | 179     | 5.9  | 0.418 | 4.9  | LOS A | 2.6  | 19.0  | 0.72 | 0.66 | 0.75 | 34.3    |
| 8      | T1       | All MCs    | 3     | 0.0  | 3       | 0.0  | 0.418 | 4.5  | LOS A | 2.6  | 19.0  | 0.72 | 0.66 | 0.75 | 30.4    |
| 9      | R2       | All MCs    | 133   | 3.2  | 133     | 3.2  | 0.418 | 9.2  | LOS A | 2.6  | 19.0  | 0.72 | 0.66 | 0.75 | 33.8    |
| Appro  | bach     |            | 315   | 4.7  | 315     | 4.7  | 0.418 | 6.7  | LOS A | 2.6  | 19.0  | 0.72 | 0.66 | 0.75 | 34.1    |
| West   | : Clarri | e Hermes   | Drive |      |         |      |       |      |       |      |       |      |      |      |         |
| 10     | L2       | All MCs    | 108   | 2.9  | 108     | 2.9  | 0.413 | 5.1  | LOS A | 3.0  | 21.8  | 0.26 | 0.41 | 0.26 | 42.2    |
| 11     | T1       | All MCs    | 546   | 6.4  | 546     | 6.4  | 0.413 | 5.1  | LOS A | 3.0  | 21.8  | 0.26 | 0.41 | 0.26 | 62.2    |
| 12     | R2       | All MCs    | 8     | 0.0  | 8       | 0.0  | 0.413 | 12.9 | LOS A | 3.0  | 21.8  | 0.26 | 0.41 | 0.26 | 55.2    |
| Appro  | bach     |            | 663   | 5.7  | 663     | 5.7  | 0.413 | 5.2  | LOS A | 3.0  | 21.8  | 0.26 | 0.41 | 0.26 | 59.0    |
| All Ve | hicles   |            | 1737  | 5.5  | 1737    | 5.5  | 1.034 | 27.2 | LOS B | 46.2 | 339.3 | 0.66 | 0.96 | 1.25 | 35.9    |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Lane Us             | e and P                            | erfor   | mance   |     |       |              |               |                |                     |                       |       |                |                |                  |                  |
|---------------------|------------------------------------|---------|---------|-----|-------|--------------|---------------|----------------|---------------------|-----------------------|-------|----------------|----------------|------------------|------------------|
|                     | Dem<br>Flo <sup>r</sup><br>[ Total | ws      | Arrival |     | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% B<br>Que<br>[ Veh |       | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. E |                  |
|                     | veh/h                              | %       | veh/h   | %   | veh/h | v/c          | %             | sec            |                     | [ •011                | m     |                | m              | %                | %                |
| South: Cla          | arrie Her                          | mes D   | rive    |     |       |              |               |                |                     |                       |       |                |                |                  |                  |
| Lane 1 <sup>d</sup> | 35                                 | 0.0     | 35      | 0.0 | 772   | 0.045        | 100           | 8.6            | LOS A               | 0.3                   | 2.1   | Full           | 115            | 0.0              | 0.0              |
| Approach            | 35                                 | 0.0     | 35      | 0.0 |       | 0.045        |               | 8.6            | LOS A               | 0.3                   | 2.1   |                |                |                  |                  |
| East: Clar          | rie Herm                           | nes Dri | ve      |     |       |              |               |                |                     |                       |       |                |                |                  |                  |
| Lane 1 <sup>d</sup> | 724                                | 5.8     | 724     | 5.8 | 700   | 1.034        | 100           | 57.3           | LOS E               | 46.2                  | 339.3 | Full           | 325            | -11.0            | <mark>6.3</mark> |
| Approach            | 724                                | 5.8     | 724     | 5.8 |       | 1.034        |               | 57.3           | LOS E               | 46.2                  | 339.3 |                |                |                  |                  |
| North: Kin          | gsland F                           | Parade  |         |     |       |              |               |                |                     |                       |       |                |                |                  |                  |
| Lane 1 <sup>d</sup> | 315                                | 4.7     | 315     | 4.7 | 752   | 0.418        | 100           | 6.7            | LOS A               | 2.6                   | 19.0  | Full           | 65             | 0.0              | 0.0              |
| Approach            | 315                                | 4.7     | 315     | 4.7 |       | 0.418        |               | 6.7            | LOS A               | 2.6                   | 19.0  |                |                |                  |                  |
| West: Cla           | rrie Herr                          | nes Dr  | ive     |     |       |              |               |                |                     |                       |       |                |                |                  |                  |
| Lane 1 <sup>d</sup> | 663                                | 5.7     | 663     | 5.7 | 1605  | 0.413        | 100           | 5.2            | LOS A               | 3.0                   | 21.8  | Full           | 310            | 0.0              | 0.0              |

| Approach        | 663  | 5.7 | 663  | 5.7 | 0.413 | 5.2  | LOS A | 3.0  | 21.8  |
|-----------------|------|-----|------|-----|-------|------|-------|------|-------|
| All<br>Vehicles | 1737 | 5.5 | 1737 | 5.5 | 1.034 | 27.2 | LOS B | 46.2 | 339.3 |

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

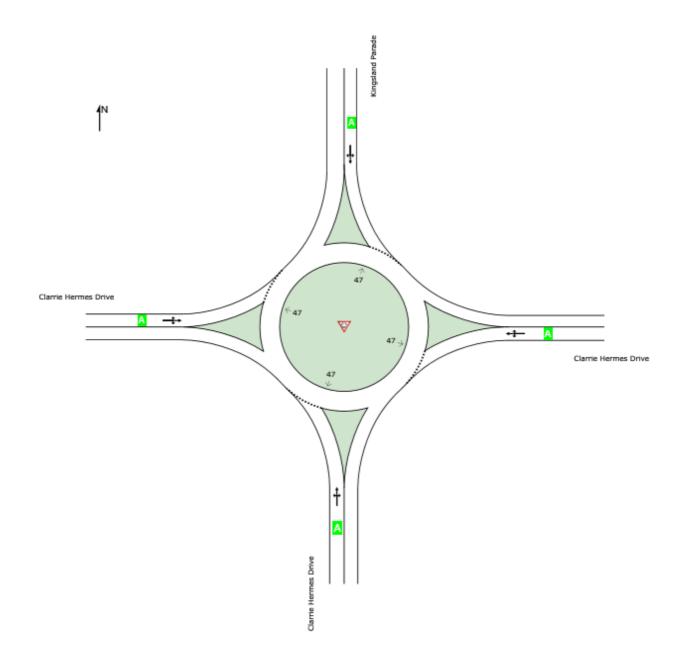
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.


d Dominant lane on roundabout approach

## 

NA Site Category: (None) Roundabout

#### LOS Summary

|     |       | Appro | aches |      | Intersection |
|-----|-------|-------|-------|------|--------------|
|     | South | East  | North | West | Intersection |
| LOS | А     | А     | А     | А    | А            |



Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

| Vehicle Movement Performance |          |                  |            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |          |      |        |       |  |
|------------------------------|----------|------------------|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------|------|--------|-------|--|
| Mov                          | Turn Mov | Demand           | Arrival    | Deg. | Aver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level of | 95% Back ( | Of Prop. | Eff. | Aver.  | Aver. |  |
| ID                           | Class    | Flows            | Flows      | Satn | Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Service  | Queue      | Que Stop |      | No. of | Speed |  |
|                              |          | [ Total HV ] [ ] | Fotal HV ] |      | , in the second s |          | [Veh. Dis  | st]      | Rate | Cycles |       |  |

|                            |                             |          | veh/h | %   | veh/h | %   | v/c   | sec  |       | veh | m    |      |      |      | km/h |
|----------------------------|-----------------------------|----------|-------|-----|-------|-----|-------|------|-------|-----|------|------|------|------|------|
| South                      | South: Clarrie Hermes Drive |          |       |     |       |     |       |      |       |     |      |      |      |      |      |
| 1                          | L2                          | All MCs  | 1     | 0.0 | 1     | 0.0 | 0.028 | 6.4  | LOS A | 0.2 | 1.3  | 0.79 | 0.64 | 0.79 | 40.2 |
| 2                          | T1                          | All MCs  | 12    | 0.0 | 12    | 0.0 | 0.028 | 5.2  | LOS A | 0.2 | 1.3  | 0.79 | 0.64 | 0.79 | 34.4 |
| 3                          | R2                          | All MCs  | 8     | 0.0 | 8     | 0.0 | 0.028 | 12.2 | LOS A | 0.2 | 1.3  | 0.79 | 0.64 | 0.79 | 39.8 |
| Appro                      | bach                        |          | 21    | 0.0 | 21    | 0.0 | 0.028 | 8.0  | LOS A | 0.2 | 1.3  | 0.79 | 0.64 | 0.79 | 37.6 |
| East: Clarrie Hermes Drive |                             |          | Drive |     |       |     |       |      |       |     |      |      |      |      |      |
| 4                          | L2                          | All MCs  | 41    | 0.0 | 41    | 0.0 | 0.580 | 5.9  | LOS A | 4.9 | 34.4 | 0.57 | 0.55 | 0.57 | 52.6 |
| 5                          | T1                          | All MCs  | 616   | 0.7 | 616   | 0.7 | 0.580 | 5.9  | LOS A | 4.9 | 34.4 | 0.57 | 0.55 | 0.57 | 59.0 |
| 6                          | R2                          | All MCs  | 177   | 1.8 | 177   | 1.8 | 0.580 | 13.7 | LOS A | 4.9 | 34.4 | 0.57 | 0.55 | 0.57 | 50.1 |
| Appro                      | Approach 8                  |          | 834   | 0.9 | 834   | 0.9 | 0.580 | 7.5  | LOS A | 4.9 | 34.4 | 0.57 | 0.55 | 0.57 | 57.1 |
| North: Kingsland Para      |                             | ade      |       |     |       |     |       |      |       |     |      |      |      |      |      |
| 7                          | L2                          | All MCs  | 187   | 0.0 | 187   | 0.0 | 0.429 | 3.8  | LOS A | 3.2 | 22.9 | 0.81 | 0.66 | 0.81 | 34.7 |
| 8                          | T1                          | All MCs  | 6     | 0.0 | 6     | 0.0 | 0.429 | 3.6  | LOS A | 3.2 | 22.9 | 0.81 | 0.66 | 0.81 | 31.1 |
| 9                          | R2                          | All MCs  | 206   | 4.6 | 206   | 4.6 | 0.429 | 8.4  | LOS A | 3.2 | 22.9 | 0.81 | 0.66 | 0.81 | 34.3 |
| Appro                      | bach                        |          | 400   | 2.4 | 400   | 2.4 | 0.429 | 6.1  | LOS A | 3.2 | 22.9 | 0.81 | 0.66 | 0.81 | 34.4 |
| West                       | Clarri                      | e Hermes | Drive |     |       |     |       |      |       |     |      |      |      |      |      |
| 10                         | L2                          | All MCs  | 261   | 0.8 | 261   | 0.8 | 0.629 | 5.9  | LOS A | 5.6 | 39.6 | 0.55 | 0.52 | 0.55 | 40.1 |
| 11                         | T1                          | All MCs  | 651   | 2.3 | 651   | 2.3 | 0.629 | 5.9  | LOS A | 5.6 | 39.6 | 0.55 | 0.52 | 0.55 | 60.2 |
| 12                         | R2                          | All MCs  | 18    | 0.0 | 18    | 0.0 | 0.629 | 13.7 | LOS A | 5.6 | 39.6 | 0.55 | 0.52 | 0.55 | 52.0 |
| Appro                      | bach                        |          | 929   | 1.8 | 929   | 1.8 | 0.629 | 6.0  | LOS A | 5.6 | 39.6 | 0.55 | 0.52 | 0.55 | 54.6 |
| All Ve                     | hicles                      |          | 2184  | 1.5 | 2184  | 1.5 | 0.629 | 6.6  | LOS A | 5.6 | 39.6 | 0.61 | 0.56 | 0.61 | 51.3 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Lane Use                    | e and P                       | Perfor    | mance            |              |               |                |                     |     |                      |       |                |                           |     |     |     |
|-----------------------------|-------------------------------|-----------|------------------|--------------|---------------|----------------|---------------------|-----|----------------------|-------|----------------|---------------------------|-----|-----|-----|
|                             | Demand Arrival Flows<br>Flows |           | Cap.             | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | Qu  | 95% Back Of<br>Queue |       | Lane<br>Length | Cap. Prob.<br>Adj. Block. |     |     |     |
|                             | [ Total<br>veh/h              | HV ]<br>% | [ Total<br>veh/h | HV ]<br>%    | veh/h         | v/c            | %                   | sec |                      | [ Veh | Dist ]<br>m    |                           | m   | %   | %   |
| South: Clarrie Hermes Drive |                               |           |                  |              |               |                |                     |     |                      |       |                |                           |     |     |     |
| Lane 1 <sup>d</sup>         | 21                            | 0.0       | 21               | 0.0          | 749           | 0.028          | 100                 | 8.0 | LOS A                | 0.2   | 1.3            | Full                      | 115 | 0.0 | 0.0 |
| Approach                    | 21                            | 0.0       | 21               | 0.0          |               | 0.028          |                     | 8.0 | LOS A                | 0.2   | 1.3            |                           |     |     |     |
| East: Clarrie Hermes Drive  |                               |           |                  |              |               |                |                     |     |                      |       |                |                           |     |     |     |
| Lane 1 <sup>d</sup>         | 834                           | 0.9       | 834              | 0.9          | 1438          | 0.580          | 100                 | 7.5 | LOS A                | 4.9   | 34.4           | Full                      | 325 | 0.0 | 0.0 |
| Approach                    | 834                           | 0.9       | 834              | 0.9          |               | 0.580          |                     | 7.5 | LOS A                | 4.9   | 34.4           |                           |     |     |     |
| North: Kin                  | gsland F                      | Parade    | •                |              |               |                |                     |     |                      |       |                |                           |     |     |     |
| Lane 1 <sup>d</sup>         | 400                           | 2.4       | 400              | 2.4          | 932           | 0.429          | 100                 | 6.1 | LOS A                | 3.2   | 22.9           | Full                      | 65  | 0.0 | 0.0 |
| Approach                    | 400                           | 2.4       | 400              | 2.4          |               | 0.429          |                     | 6.1 | LOS A                | 3.2   | 22.9           |                           |     |     |     |
| West: Clarrie Hermes Drive  |                               |           |                  |              |               |                |                     |     |                      |       |                |                           |     |     |     |
| Lane 1 <sup>d</sup>         | 929                           | 1.8       | 929              | 1.8          | 1477          | 0.629          | 100                 | 6.0 | LOS A                | 5.6   | 39.6           | Full                      | 310 | 0.0 | 0.0 |
| Approach                    | 929                           | 1.8       | 929              | 1.8          |               | 0.629          |                     | 6.0 | LOS A                | 5.6   | 39.6           |                           |     |     |     |

| All      | 2184 | 1.5 | 2184 | 1.5 | 0.629 | 6.6 | LOS A | 5.6 | 39.6 |
|----------|------|-----|------|-----|-------|-----|-------|-----|------|
| Vehicles |      |     |      |     |       |     |       |     |      |

Lane LOS values are based on average delay per lane.

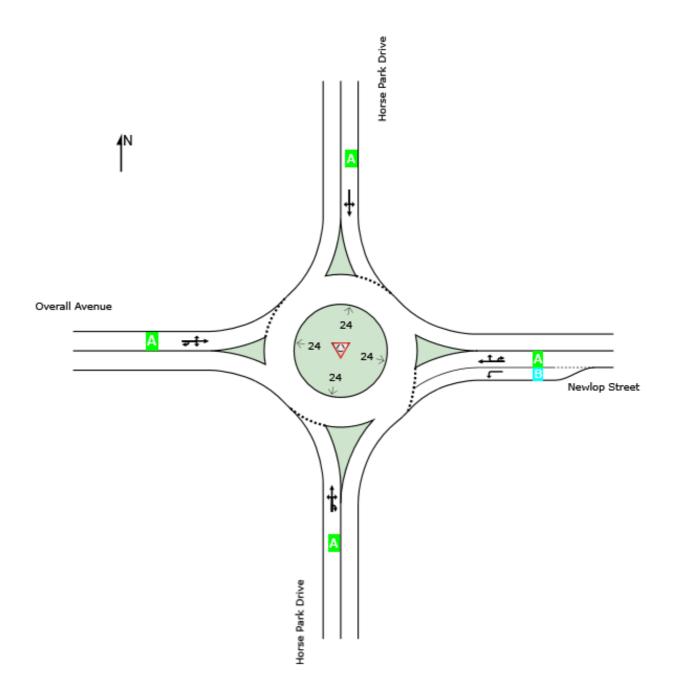
Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

# ♥ Site: 101E [AM Base 2022 Horse Park Drive and Overall Avenue Weekday Peak 8:00am - 9:00am (Site Folder: Base)]

New Site Site Category: (None) Roundabout

|     |       |      | Intersection |      |              |
|-----|-------|------|--------------|------|--------------|
|     | South | East | North        | West | Intersection |
| LOS | А     | В    | А            | А    | А            |



Lane LOS values are based on average delay per lane.

| Vehi      | Vehicle Movement Performance |                  |                  |  |  |                     |                |        |              |      |                 |                |  |  |
|-----------|------------------------------|------------------|------------------|--|--|---------------------|----------------|--------|--------------|------|-----------------|----------------|--|--|
| Mov<br>ID | Turn Mov<br>Class            | Demand<br>Flows  | Arrival<br>Flows |  |  | Level of<br>Service | 95% Ba<br>Quei | Je     | Prop.<br>Que |      | Aver.<br>No. of | Aver.<br>Speed |  |  |
|           |                              | [ Total HV ] [ ] | 「otal HV ]       |  |  |                     | [Veh.          | Dist ] |              | Rate | Cycles          |                |  |  |

|        |         |            | veh/h | %   | veh/h | %   | v/c   | sec  |       | veh  | m     |      |      |      | km/h |
|--------|---------|------------|-------|-----|-------|-----|-------|------|-------|------|-------|------|------|------|------|
| South  | n: Hors | e Park Dr  | ive   |     |       |     |       |      |       |      |       |      |      |      |      |
| 1      | L2      | All MCs    | 69    | 1.5 | 69    | 1.5 | 0.563 | 8.9  | LOS A | 4.7  | 33.9  | 0.74 | 0.69 | 0.80 | 37.8 |
| 2      | T1      | All MCs    | 422   | 4.7 | 422   | 4.7 | 0.563 | 9.5  | LOS A | 4.7  | 33.9  | 0.74 | 0.69 | 0.80 | 60.6 |
| 3      | R2      | All MCs    | 32    | 0.0 | 32    | 0.0 | 0.563 | 14.4 | LOS A | 4.7  | 33.9  | 0.74 | 0.69 | 0.80 | 41.3 |
| 3u     | U       | All MCs    | 1     | 0.0 | 1     | 0.0 | 0.563 | 17.0 | LOS B | 4.7  | 33.9  | 0.74 | 0.69 | 0.80 | 59.7 |
| Appro  | oach    |            | 524   | 4.0 | 524   | 4.0 | 0.563 | 9.8  | LOS A | 4.7  | 33.9  | 0.74 | 0.69 | 0.80 | 56.6 |
| East:  | Newlo   | p Street   |       |     |       |     |       |      |       |      |       |      |      |      |      |
| 4      | L2      | All MCs    | 72    | 2.9 | 72    | 2.9 | 0.247 | 16.7 | LOS B | 1.9  | 13.5  | 1.00 | 0.86 | 1.00 | 36.0 |
| 5      | T1      | All MCs    | 104   | 1.0 | 104   | 1.0 | 0.281 | 13.6 | LOS A | 2.6  | 18.3  | 1.00 | 0.85 | 1.00 | 30.2 |
| 6      | R2      | All MCs    | 12    | 0.0 | 12    | 0.0 | 0.281 | 18.5 | LOS B | 2.6  | 18.3  | 1.00 | 0.85 | 1.00 | 38.3 |
| 6u     | U       | All MCs    | 1     | 0.0 | 1     | 0.0 | 0.281 | 22.2 | LOS B | 2.6  | 18.3  | 1.00 | 0.85 | 1.00 | 32.8 |
| Appro  | oach    |            | 188   | 1.7 | 188   | 1.7 | 0.281 | 15.1 | LOS B | 2.6  | 18.3  | 1.00 | 0.86 | 1.00 | 33.8 |
| North  | : Hors  | e Park Dri | ve    |     |       |     |       |      |       |      |       |      |      |      |      |
| 7      | L2      | All MCs    | 6     | 0.0 | 6     | 0.0 | 0.869 | 12.5 | LOS A | 16.6 | 119.1 | 0.98 | 0.81 | 1.24 | 51.8 |
| 8      | T1      | All MCs    | 743   | 3.3 | 743   | 3.3 | 0.869 | 13.1 | LOS A | 16.6 | 119.1 | 0.98 | 0.81 | 1.24 | 57.4 |
| 9      | R2      | All MCs    | 268   | 3.1 | 268   | 3.1 | 0.869 | 18.2 | LOS B | 16.6 | 119.1 | 0.98 | 0.81 | 1.24 | 48.3 |
| Appro  | oach    |            | 1018  | 3.2 | 1018  | 3.2 | 0.869 | 14.4 | LOS A | 16.6 | 119.1 | 0.98 | 0.81 | 1.24 | 55.4 |
| West   | : Overa | all Avenue | 1     |     |       |     |       |      |       |      |       |      |      |      |      |
| 10     | L2      | All MCs    | 126   | 4.2 | 126   | 4.2 | 0.355 | 4.8  | LOS A | 2.2  | 16.1  | 0.64 | 0.64 | 0.64 | 42.0 |
| 11     | T1      | All MCs    | 45    | 7.0 | 45    | 7.0 | 0.355 | 4.7  | LOS A | 2.2  | 16.1  | 0.64 | 0.64 | 0.64 | 36.4 |
| 12     | R2      | All MCs    | 185   | 1.1 | 185   | 1.1 | 0.355 | 9.4  | LOS A | 2.2  | 16.1  | 0.64 | 0.64 | 0.64 | 41.0 |
| 12u    | U       | All MCs    | 1     | 0.0 | 1     | 0.0 | 0.355 | 11.3 | LOS A | 2.2  | 16.1  | 0.64 | 0.64 | 0.64 | 16.1 |
| Appro  | oach    |            | 358   | 2.9 | 358   | 2.9 | 0.355 | 7.2  | LOS A | 2.2  | 16.1  | 0.64 | 0.64 | 0.64 | 41.0 |
| All Ve | ehicles |            | 2088  | 3.2 | 2088  | 3.2 | 0.869 | 12.1 | LOS A | 16.6 | 119.1 | 0.86 | 0.76 | 1.01 | 51.8 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Lane Use            | e and P          | erfor     | mance            |           |       |              |               |                |                     |              |             |                |                |                  |     |
|---------------------|------------------|-----------|------------------|-----------|-------|--------------|---------------|----------------|---------------------|--------------|-------------|----------------|----------------|------------------|-----|
|                     | Dem<br>Flo       | WS        | Arrival          |           | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% B<br>Que | eue         | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. B |     |
|                     | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | veh/h | v/c          | %             | sec            |                     | [ Veh        | Dist ]<br>m |                | m              | %                | %   |
| South: Ho           | rse Park         | Drive     |                  |           |       |              |               |                |                     |              |             |                |                |                  |     |
| Lane 1 <sup>d</sup> | 524              | 4.0       | 524              | 4.0       | 932   | 0.563        | 100           | 9.8            | LOS A               | 4.7          | 33.9        | Full           | 450            | 0.0              | 0.0 |
| Approach            | 524              | 4.0       | 524              | 4.0       |       | 0.563        |               | 9.8            | LOS A               | 4.7          | 33.9        |                |                |                  |     |
| East: New           | lop Stre         | et        |                  |           |       |              |               |                |                     |              |             |                |                |                  |     |
| Lane 1              | 72               | 2.9       | 72               | 2.9       | 289   | 0.247        | 100           | 16.7           | LOS B               | 1.9          | 13.5        | Short          | 36             | 0.0              | NA  |
| Lane 2 <sup>d</sup> | 117              | 0.9       | 117              | 0.9       | 416   | 0.281        | 100           | 14.1           | LOS A               | 2.6          | 18.3        | Full           | 170            | 0.0              | 0.0 |
| Approach            | 188              | 1.7       | 188              | 1.7       |       | 0.281        |               | 15.1           | LOS B               | 2.6          | 18.3        |                |                |                  |     |
| North: Hor          | rse Park         | Drive     |                  |           |       |              |               |                |                     |              |             |                |                |                  |     |
| Lane 1 <sup>d</sup> | 1018             | 3.2       | 1018             | 3.2       | 1172  | 0.869        | 100           | 14.4           | LOS A               | 16.6         | 119.1       | Full           | 500            | 0.0              | 0.0 |

| Approach            | 1018     | 3.2 | 1018 | 3.2 |      | 0.869 |     | 14.4 | LOS A | 16.6 | 119.1 |      |     |     |     |
|---------------------|----------|-----|------|-----|------|-------|-----|------|-------|------|-------|------|-----|-----|-----|
| West: Ove           | rall Ave | nue |      |     |      |       |     |      |       |      |       |      |     |     |     |
| Lane 1 <sup>d</sup> | 358      | 2.9 | 358  | 2.9 | 1008 | 0.355 | 100 | 7.2  | LOS A | 2.2  | 16.1  | Full | 100 | 0.0 | 0.0 |
| Approach            | 358      | 2.9 | 358  | 2.9 |      | 0.355 |     | 7.2  | LOS A | 2.2  | 16.1  |      |     |     |     |
| All<br>Vehicles     | 2088     | 3.2 | 2088 | 3.2 |      | 0.869 |     | 12.1 | LOS A | 16.6 | 119.1 |      |     |     |     |

Lane LOS values are based on average delay per lane.

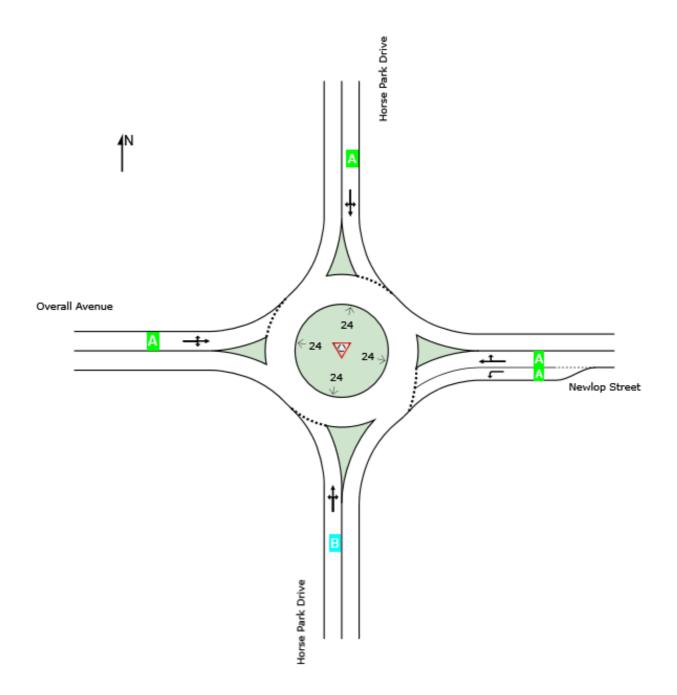
Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

## 

New Site Site Category: (None) Roundabout

|     |       | Appro | aches |      | Intersection |
|-----|-------|-------|-------|------|--------------|
|     | South | East  | North | West | Intersection |
| LOS | В     | А     | A     | А    | А            |



Lane LOS values are based on average delay per lane.

| Vehi | Vehicle Movement Performance |                  |             |      |       |          |                    |     |      |        |       |  |  |  |
|------|------------------------------|------------------|-------------|------|-------|----------|--------------------|-----|------|--------|-------|--|--|--|
| Mov  | Turn Mov                     | Demand           | Arrival     |      |       | Level of | 95% Back (         |     | Eff. | Aver.  | Aver. |  |  |  |
| ID   | Class                        | Flows            | Flows       | Satn | Delay | Service  | Queue<br>[ Veh. Di | Que |      | No. of | Speed |  |  |  |
|      |                              | [ Total HV ] [ ] | iotar fiv j |      |       |          | [ven. Di           | sij | Rate | Cycles |       |  |  |  |

|        |         |            | veh/h | %   | veh/h | %   | v/c   | sec  |       | veh  | m     |      |      |      | km/h |
|--------|---------|------------|-------|-----|-------|-----|-------|------|-------|------|-------|------|------|------|------|
| South  | : Hors  | e Park Dr  | ive   |     |       |     |       |      |       |      |       |      |      |      |      |
| 1      | L2      | All MCs    | 142   | 0.7 | 142   | 0.7 | 0.879 | 14.7 | LOS B | 17.3 | 122.3 | 1.00 | 0.89 | 1.39 | 34.7 |
| 2      | T1      | All MCs    | 748   | 1.3 | 748   | 1.3 | 0.879 | 15.2 | LOS B | 17.3 | 122.3 | 1.00 | 0.89 | 1.39 | 56.7 |
| 3      | R2      | All MCs    | 71    | 1.5 | 71    | 1.5 | 0.879 | 20.3 | LOS B | 17.3 | 122.3 | 1.00 | 0.89 | 1.39 | 48.3 |
| Appro  | ach     |            | 961   | 1.2 | 961   | 1.2 | 0.879 | 15.5 | LOS B | 17.3 | 122.3 | 1.00 | 0.89 | 1.39 | 53.0 |
| East:  | Newlo   | p Street   |       |     |       |     |       |      |       |      |       |      |      |      |      |
| 4      | L2      | All MCs    | 52    | 0.0 | 52    | 0.0 | 0.074 | 7.2  | LOS A | 0.5  | 3.2   | 0.74 | 0.67 | 0.74 | 42.4 |
| 5      | T1      | All MCs    | 93    | 0.0 | 93    | 0.0 | 0.108 | 5.7  | LOS A | 0.8  | 5.4   | 0.76 | 0.62 | 0.76 | 37.1 |
| 6      | R2      | All MCs    | 8     | 0.0 | 8     | 0.0 | 0.108 | 10.7 | LOS A | 0.8  | 5.4   | 0.76 | 0.62 | 0.76 | 42.7 |
| Appro  | ach     |            | 153   | 0.0 | 153   | 0.0 | 0.108 | 6.5  | LOS A | 0.8  | 5.4   | 0.75 | 0.64 | 0.75 | 40.0 |
| North  | : Horse | e Park Dri | ive   |     |       |     |       |      |       |      |       |      |      |      |      |
| 7      | L2      | All MCs    | 15    | 0.0 | 15    | 0.0 | 0.551 | 7.0  | LOS A | 4.4  | 31.5  | 0.61 | 0.61 | 0.61 | 56.0 |
| 8      | T1      | All MCs    | 426   | 1.2 | 426   | 1.2 | 0.551 | 7.5  | LOS A | 4.4  | 31.5  | 0.61 | 0.61 | 0.61 | 61.6 |
| 9      | R2      | All MCs    | 206   | 2.0 | 206   | 2.0 | 0.551 | 12.7 | LOS A | 4.4  | 31.5  | 0.61 | 0.61 | 0.61 | 52.4 |
| Appro  | ach     |            | 647   | 1.5 | 647   | 1.5 | 0.551 | 9.2  | LOS A | 4.4  | 31.5  | 0.61 | 0.61 | 0.61 | 59.0 |
| West:  | Overa   | all Avenue | :     |     |       |     |       |      |       |      |       |      |      |      |      |
| 10     | L2      | All MCs    | 191   | 2.2 | 191   | 2.2 | 0.567 | 10.1 | LOS A | 5.4  | 38.2  | 0.98 | 0.88 | 1.17 | 39.5 |
| 11     | T1      | All MCs    | 89    | 1.2 | 89    | 1.2 | 0.567 | 9.8  | LOS A | 5.4  | 38.2  | 0.98 | 0.88 | 1.17 | 32.6 |
| 12     | R2      | All MCs    | 83    | 0.0 | 83    | 0.0 | 0.567 | 14.7 | LOS B | 5.4  | 38.2  | 0.98 | 0.88 | 1.17 | 38.4 |
| Appro  | ach     |            | 363   | 1.4 | 363   | 1.4 | 0.567 | 11.1 | LOS A | 5.4  | 38.2  | 0.98 | 0.88 | 1.17 | 38.1 |
| All Ve | hicles  |            | 2124  | 1.2 | 2124  | 1.2 | 0.879 | 12.2 | LOS A | 17.3 | 122.3 | 0.86 | 0.79 | 1.07 | 51.8 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Lane Use            | e and P          | Perfor             | mance            |           |       |              |               |                |                     |              |            |                |                |                  |     |
|---------------------|------------------|--------------------|------------------|-----------|-------|--------------|---------------|----------------|---------------------|--------------|------------|----------------|----------------|------------------|-----|
|                     | Dem<br>Flo       | WS                 | Arrival          |           | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% B<br>Que | eue        | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. B |     |
|                     | [ Total<br>veh/h | HV ]<br>%          | [ Total<br>veh/h | HV ]<br>% | veh/h | v/c          | %             | sec            |                     | [ Veh        | Dist]<br>m |                | m              | %                | %   |
| South: Ho           | rse Parl         | <pre>c Drive</pre> |                  |           |       |              |               |                |                     |              |            |                |                |                  |     |
| Lane 1 <sup>d</sup> | 961              | 1.2                | 961              | 1.2       | 1094  | 0.879        | 100           | 15.5           | LOS B               | 17.3         | 122.3      | Full           | 450            | 0.0              | 0.0 |
| Approach            | 961              | 1.2                | 961              | 1.2       |       | 0.879        |               | 15.5           | LOS B               | 17.3         | 122.3      |                |                |                  |     |
| East: New           | lop Stre         | et                 |                  |           |       |              |               |                |                     |              |            |                |                |                  |     |
| Lane 1              | 52               | 0.0                | 52               | 0.0       | 696   | 0.074        | 100           | 7.2            | LOS A               | 0.5          | 3.2        | Short          | 36             | 0.0              | NA  |
| Lane 2 <sup>d</sup> | 101              | 0.0                | 101              | 0.0       | 937   | 0.108        | 100           | 6.2            | LOS A               | 0.8          | 5.4        | Full           | 170            | 0.0              | 0.0 |
| Approach            | 153              | 0.0                | 153              | 0.0       |       | 0.108        |               | 6.5            | LOS A               | 0.8          | 5.4        |                |                |                  |     |
| North: Hor          | rse Park         | Drive              |                  |           |       |              |               |                |                     |              |            |                |                |                  |     |
| Lane 1 <sup>d</sup> | 647              | 1.5                | 647              | 1.5       | 1175  | 0.551        | 100           | 9.2            | LOS A               | 4.4          | 31.5       | Full           | 500            | 0.0              | 0.0 |
| Approach            | 647              | 1.5                | 647              | 1.5       |       | 0.551        |               | 9.2            | LOS A               | 4.4          | 31.5       |                |                |                  |     |
| West: Ove           | erall Ave        | nue                |                  |           |       |              |               |                |                     |              |            |                |                |                  |     |
| Lane 1 <sup>d</sup> | 363              | 1.4                | 363              | 1.4       | 641   | 0.567        | 100           | 11.1           | LOS A               | 5.4          | 38.2       | Full           | 100            | 0.0              | 0.0 |

| Approach        | 363  | 1.4 | 363  | 1.4 | 0.567 | 11.1 | LOS A | 5.4  | 38.2  |  |
|-----------------|------|-----|------|-----|-------|------|-------|------|-------|--|
| All<br>Vehicles | 2124 | 1.2 | 2124 | 1.2 | 0.879 | 12.2 | LOS A | 17.3 | 122.3 |  |

Lane LOS values are based on average delay per lane.

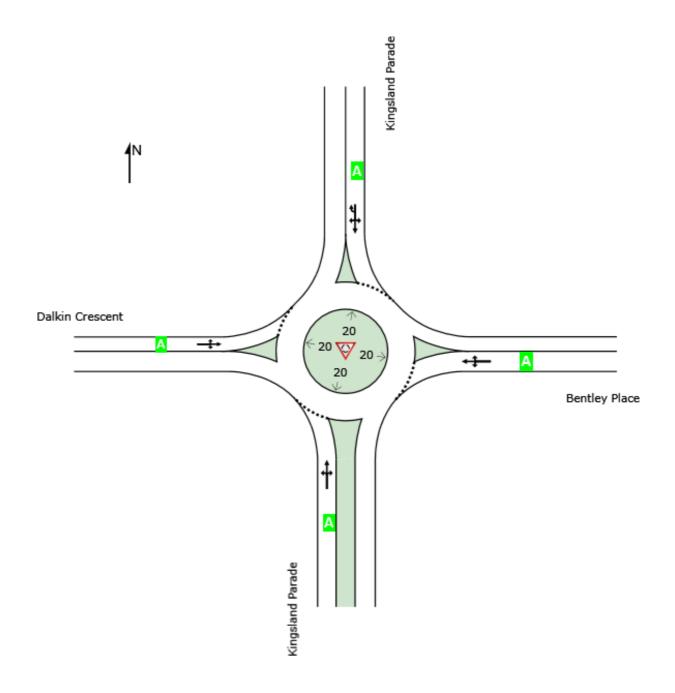
Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

# **W** Site: 101A [AM Development 2024 Kingsland Parade and Bentley Place Weekday Peak 8:00am - 9:00am (Site Folder: Development)]

New Site Site Category: (None) Roundabout

|     |       | Intersection |       |      |              |
|-----|-------|--------------|-------|------|--------------|
|     | South | East         | North | West | Intersection |
| LOS | А     | А            | А     | А    | А            |



Lane LOS values are based on average delay per lane.

| Vehi | cle Movemen | t Performanc              | e                   |      |       |          |                |             |       |      |                  |       |
|------|-------------|---------------------------|---------------------|------|-------|----------|----------------|-------------|-------|------|------------------|-------|
| Mov  | Turn Mov    | Demand                    | Arrival             |      |       | Level of | 95% Ba         |             | Prop. | Eff. | Aver.            | Aver. |
| ID   | Class       | Flows<br>[ Total HV ] [ ] | Flows<br>[otal HV ] | Satn | Delay | Service  | Quei<br>[ Veh. | ue<br>Dist] | Que   |      | No. of<br>Cycles | Speed |

|        |          |            | veh/h | %         | veh/h | %         | v/c   | sec |       | veh | m   |      |      |      | km/h |
|--------|----------|------------|-------|-----------|-------|-----------|-------|-----|-------|-----|-----|------|------|------|------|
| Sout   | n: King  | sland Para | ade   |           |       |           |       |     |       |     |     |      |      |      |      |
| 1      | L2       | All MCs    | 32    | 13.3      | 32    | 13.3      | 0.168 | 2.1 | LOS A | 0.9 | 6.4 | 0.22 | 0.27 | 0.22 | 37.4 |
| 2      | T1       | All MCs    | 165   | 5.1       | 165   | 5.1       | 0.168 | 1.5 | LOS A | 0.9 | 6.4 | 0.22 | 0.27 | 0.22 | 36.9 |
| 3      | R2       | All MCs    | 21    | 0.0       | 21    | 0.0       | 0.168 | 5.8 | LOS A | 0.9 | 6.4 | 0.22 | 0.27 | 0.22 | 33.0 |
| Appr   | oach     |            | 218   | 5.8       | 218   | 5.8       | 0.168 | 2.0 | LOS A | 0.9 | 6.4 | 0.22 | 0.27 | 0.22 | 36.8 |
| East:  | Bentle   | ey Place   |       |           |       |           |       |     |       |     |     |      |      |      |      |
| 4      | L2       | All MCs    | 209   | 1.0       | 209   | 1.0       | 0.242 | 3.0 | LOS A | 1.2 | 8.5 | 0.42 | 0.46 | 0.42 | 31.5 |
| 5      | T1       | All MCs    | 22    | 0.0       | 22    | 0.0       | 0.242 | 2.5 | LOS A | 1.2 | 8.5 | 0.42 | 0.46 | 0.42 | 36.9 |
| 6      | R2       | All MCs    | 38    | 2.8       | 38    | 2.8       | 0.242 | 6.8 | LOS A | 1.2 | 8.5 | 0.42 | 0.46 | 0.42 | 35.4 |
| Appr   | oach     |            | 269   | 1.2       | 269   | 1.2       | 0.242 | 3.5 | LOS A | 1.2 | 8.5 | 0.42 | 0.46 | 0.42 | 33.3 |
| North  | n: Kings | sland Para | ade   |           |       |           |       |     |       |     |     |      |      |      |      |
| 7      | L2       | All MCs    | 18    | 0.0       | 18    | 0.0       | 0.189 | 4.3 | LOS A | 1.0 | 7.2 | 0.25 | 0.27 | 0.25 | 38.7 |
| 8      | T1       | All MCs    | 209   | 4.5       | 209   | 4.5       | 0.189 | 1.6 | LOS A | 1.0 | 7.2 | 0.25 | 0.27 | 0.25 | 37.4 |
| 9      | R2       | All MCs    | 11    | 0.0       | 11    | 0.0       | 0.189 | 5.9 | LOS A | 1.0 | 7.2 | 0.25 | 0.27 | 0.25 | 38.2 |
| 9u     | U        | All MCs    | 4     | 100.<br>0 | 4     | 100.<br>0 | 0.189 | 8.3 | LOS A | 1.0 | 7.2 | 0.25 | 0.27 | 0.25 | 37.4 |
| Appr   | oach     |            | 242   | 5.7       | 242   | 5.7       | 0.189 | 2.1 | LOS A | 1.0 | 7.2 | 0.25 | 0.27 | 0.25 | 37.6 |
| West   | : Dalkii | n Crescen  | ıt    |           |       |           |       |     |       |     |     |      |      |      |      |
| 10     | L2       | All MCs    | 25    | 0.0       | 25    | 0.0       | 0.091 | 3.0 | LOS A | 0.5 | 3.5 | 0.43 | 0.54 | 0.43 | 37.2 |
| 11     | T1       | All MCs    | 9     | 0.0       | 9     | 0.0       | 0.091 | 5.4 | LOS A | 0.5 | 3.5 | 0.43 | 0.54 | 0.43 | 37.6 |
| 12     | R2       | All MCs    | 63    | 0.0       | 63    | 0.0       | 0.091 | 6.9 | LOS A | 0.5 | 3.5 | 0.43 | 0.54 | 0.43 | 35.9 |
| Appr   | oach     |            | 98    | 0.0       | 98    | 0.0       | 0.091 | 5.7 | LOS A | 0.5 | 3.5 | 0.43 | 0.54 | 0.43 | 36.5 |
| All Ve | ehicles  |            | 827   | 3.6       | 827   | 3.6       | 0.242 | 3.0 | LOS A | 1.2 | 8.5 | 0.32 | 0.37 | 0.32 | 36.2 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Lane Use            | e and P               | erfor     | mance              |     |       |              |       |                |                     |                        |     |                |                |                  |       |
|---------------------|-----------------------|-----------|--------------------|-----|-------|--------------|-------|----------------|---------------------|------------------------|-----|----------------|----------------|------------------|-------|
|                     | Dem<br>Flo<br>[ Total | ws<br>HV] | Arrival<br>[ Total |     | Cap.  | Deg.<br>Satn | Util. | Aver.<br>Delay | Level of<br>Service | 95% Ba<br>Que<br>[ Veh |     | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. B | lock. |
|                     | veh/h                 | %         | veh/h              | %   | veh/h | v/c          | %     | sec            |                     |                        | m   |                | m              | %                | %     |
| South: Kin          | gsland                | Parade    | 9                  |     |       |              |       |                |                     |                        |     |                |                |                  |       |
| Lane 1 <sup>d</sup> | 218                   | 5.8       | 218                | 5.8 | 1300  | 0.168        | 100   | 2.0            | LOS A               | 0.9                    | 6.4 | Full           | 70             | 0.0              | 0.0   |
| Approach            | 218                   | 5.8       | 218                | 5.8 |       | 0.168        |       | 2.0            | LOS A               | 0.9                    | 6.4 |                |                |                  |       |
| East: Bent          | ley Plac              | e         |                    |     |       |              |       |                |                     |                        |     |                |                |                  |       |
| Lane 1 <sup>d</sup> | 269                   | 1.2       | 269                | 1.2 | 1114  | 0.242        | 100   | 3.5            | LOS A               | 1.2                    | 8.5 | Full           | 95             | 0.0              | 0.0   |
| Approach            | 269                   | 1.2       | 269                | 1.2 |       | 0.242        |       | 3.5            | LOS A               | 1.2                    | 8.5 |                |                |                  |       |
| North: King         | gsland F              | Parade    | •                  |     |       |              |       |                |                     |                        |     |                |                |                  |       |
| Lane 1 <sup>d</sup> | 242                   | 5.7       | 242                | 5.7 | 1279  | 0.189        | 100   | 2.1            | LOS A               | 1.0                    | 7.2 | Full           | 300            | 0.0              | 0.0   |
| Approach            | 242                   | 5.7       | 242                | 5.7 |       | 0.189        |       | 2.1            | LOS A               | 1.0                    | 7.2 |                |                |                  |       |
| West: Dall          | kin Cres              | cent      |                    |     |       |              |       |                |                     |                        |     |                |                |                  |       |
| Lane 1 <sup>d</sup> | 98                    | 0.0       | 98                 | 0.0 | 1080  | 0.091        | 100   | 5.7            | LOS A               | 0.5                    | 3.5 | Full           | 420            | 0.0              | 0.0   |

| Approach        | 98  | 0.0 | 98  | 0.0 | 0.091 | 5.7 | LOS A | 0.5 | 3.5 |  |
|-----------------|-----|-----|-----|-----|-------|-----|-------|-----|-----|--|
| All<br>Vehicles | 827 | 3.6 | 827 | 3.6 | 0.242 | 3.0 | LOS A | 1.2 | 8.5 |  |

Lane LOS values are based on average delay per lane.

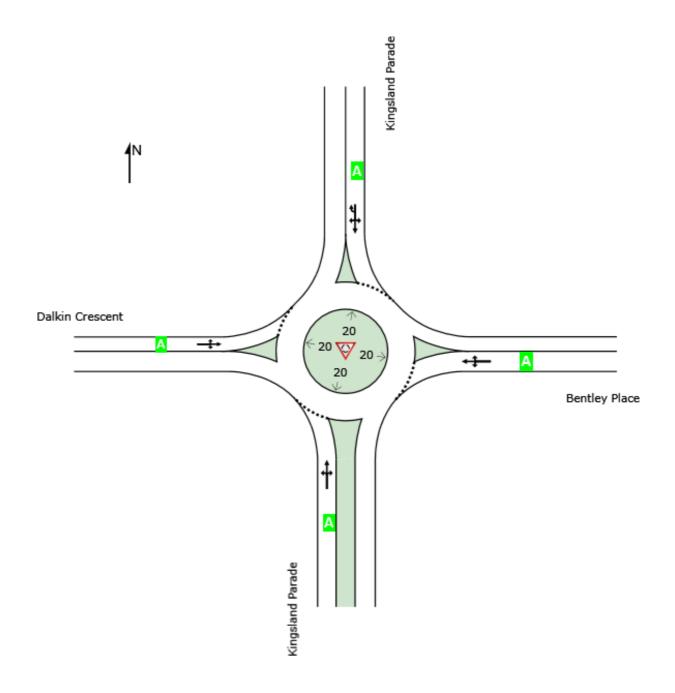
Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

## **W** Site: 101B [PM Development 2024 Kingsland Parade and Bentley Place Weekday Peak 5:15pm - 6:15pm (Site Folder: Development)]

New Site Site Category: (None) Roundabout

|     |       | Appro | aches |      | Intersection |
|-----|-------|-------|-------|------|--------------|
|     | South | East  | North | West | Intersection |
| LOS | А     | А     | А     | А    | А            |



Lane LOS values are based on average delay per lane.

| Vehi | cle Movemen | t Performanc              | e                   |      |       |          |                |             |       |      |                  |       |
|------|-------------|---------------------------|---------------------|------|-------|----------|----------------|-------------|-------|------|------------------|-------|
| Mov  | Turn Mov    | Demand                    | Arrival             |      |       | Level of | 95% Ba         |             | Prop. | Eff. | Aver.            | Aver. |
| ID   | Class       | Flows<br>[ Total HV ] [ ] | Flows<br>[otal HV ] | Satn | Delay | Service  | Quei<br>[ Veh. | ue<br>Dist] | Que   |      | No. of<br>Cycles | Speed |

|        |          |            | veh/h | %    | veh/h | %    | v/c   | sec |       | veh | m    |      |      |      | km/h |
|--------|----------|------------|-------|------|-------|------|-------|-----|-------|-----|------|------|------|------|------|
| South  | n: King  | sland Para | ade   |      |       |      |       |     |       |     |      |      |      |      |      |
| 1      | L2       | All MCs    | 55    | 0.0  | 55    | 0.0  | 0.447 | 2.4 | LOS A | 3.1 | 22.1 | 0.37 | 0.37 | 0.37 | 36.5 |
| 2      | T1       | All MCs    | 383   | 1.9  | 383   | 1.9  | 0.447 | 1.9 | LOS A | 3.1 | 22.1 | 0.37 | 0.37 | 0.37 | 35.8 |
| 3      | R2       | All MCs    | 154   | 1.4  | 154   | 1.4  | 0.447 | 6.2 | LOS A | 3.1 | 22.1 | 0.37 | 0.37 | 0.37 | 31.1 |
| Appro  | oach     |            | 592   | 1.6  | 592   | 1.6  | 0.447 | 3.1 | LOS A | 3.1 | 22.1 | 0.37 | 0.37 | 0.37 | 35.2 |
| East:  | Bentle   | ey Place   |       |      |       |      |       |     |       |     |      |      |      |      |      |
| 4      | L2       | All MCs    | 171   | 1.2  | 171   | 1.2  | 0.228 | 2.9 | LOS A | 1.2 | 8.2  | 0.43 | 0.46 | 0.43 | 31.3 |
| 5      | T1       | All MCs    | 33    | 0.0  | 33    | 0.0  | 0.228 | 2.4 | LOS A | 1.2 | 8.2  | 0.43 | 0.46 | 0.43 | 36.8 |
| 6      | R2       | All MCs    | 49    | 4.3  | 49    | 4.3  | 0.228 | 6.8 | LOS A | 1.2 | 8.2  | 0.43 | 0.46 | 0.43 | 35.3 |
| Appro  | oach     |            | 253   | 1.7  | 253   | 1.7  | 0.228 | 3.6 | LOS A | 1.2 | 8.2  | 0.43 | 0.46 | 0.43 | 33.7 |
| North  | n: Kings | sland Para | de    |      |       |      |       |     |       |     |      |      |      |      |      |
| 7      | L2       | All MCs    | 20    | 0.0  | 20    | 0.0  | 0.231 | 2.6 | LOS A | 1.2 | 8.8  | 0.38 | 0.36 | 0.38 | 36.1 |
| 8      | T1       | All MCs    | 211   | 3.5  | 211   | 3.5  | 0.231 | 2.1 | LOS A | 1.2 | 8.8  | 0.38 | 0.36 | 0.38 | 36.1 |
| 9      | R2       | All MCs    | 23    | 0.0  | 23    | 0.0  | 0.231 | 6.4 | LOS A | 1.2 | 8.8  | 0.38 | 0.36 | 0.38 | 37.5 |
| 9u     | U        | All MCs    | 9     | 55.6 | 9     | 55.6 | 0.231 | 8.7 | LOS A | 1.2 | 8.8  | 0.38 | 0.36 | 0.38 | 36.8 |
| Appro  | oach     |            | 263   | 4.8  | 263   | 4.8  | 0.231 | 2.8 | LOS A | 1.2 | 8.8  | 0.38 | 0.36 | 0.38 | 36.4 |
| West   | : Dalkii | n Crescen  | t     |      |       |      |       |     |       |     |      |      |      |      |      |
| 10     | L2       | All MCs    | 36    | 0.0  | 36    | 0.0  | 0.099 | 5.6 | LOS A | 0.6 | 4.2  | 0.69 | 0.64 | 0.69 | 36.0 |
| 11     | T1       | All MCs    | 12    | 0.0  | 12    | 0.0  | 0.099 | 5.2 | LOS A | 0.6 | 4.2  | 0.69 | 0.64 | 0.69 | 34.9 |
| 12     | R2       | All MCs    | 28    | 0.0  | 28    | 0.0  | 0.099 | 9.5 | LOS A | 0.6 | 4.2  | 0.69 | 0.64 | 0.69 | 34.4 |
| Appro  | oach     |            | 76    | 0.0  | 76    | 0.0  | 0.099 | 7.0 | LOS A | 0.6 | 4.2  | 0.69 | 0.64 | 0.69 | 35.4 |
| All Ve | ehicles  |            | 1183  | 2.2  | 1183  | 2.2  | 0.447 | 3.4 | LOS A | 3.1 | 22.1 | 0.40 | 0.40 | 0.40 | 35.2 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Lane Use            | e and P               | Perfor   | mance   |          |       |              |               |                |                     |                        |      |                |                |                  |     |
|---------------------|-----------------------|----------|---------|----------|-------|--------------|---------------|----------------|---------------------|------------------------|------|----------------|----------------|------------------|-----|
|                     | Dem<br>Flo<br>[ Total | WS       | Arrival |          | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% Ba<br>Que<br>[ Veh |      | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. B |     |
|                     | veh/h                 | ⊓vj<br>% | veh/h   | ⊓vj<br>% | veh/h | v/c          | %             | sec            |                     | [ ven                  | m m  |                | m              | %                | %   |
| South: Kin          | gsland                | Parade   | Э       |          |       |              |               |                |                     |                        |      |                |                |                  |     |
| Lane 1 <sup>d</sup> | 592                   | 1.6      | 592     | 1.6      | 1324  | 0.447        | 100           | 3.1            | LOS A               | 3.1                    | 22.1 | Full           | 70             | 0.0              | 0.0 |
| Approach            | 592                   | 1.6      | 592     | 1.6      |       | 0.447        |               | 3.1            | LOS A               | 3.1                    | 22.1 |                |                |                  |     |
| East: Bentley Place |                       |          |         |          |       |              |               |                |                     |                        |      |                |                |                  |     |
| Lane 1 <sup>d</sup> | 253                   | 1.7      | 253     | 1.7      | 1106  | 0.228        | 100           | 3.6            | LOS A               | 1.2                    | 8.2  | Full           | 95             | 0.0              | 0.0 |
| Approach            | 253                   | 1.7      | 253     | 1.7      |       | 0.228        |               | 3.6            | LOS A               | 1.2                    | 8.2  |                |                |                  |     |
| North: Kin          | gsland F              | Parade   | ;       |          |       |              |               |                |                     |                        |      |                |                |                  |     |
| Lane 1 <sup>d</sup> | 263                   | 4.8      | 263     | 4.8      | 1140  | 0.231        | 100           | 2.8            | LOS A               | 1.2                    | 8.8  | Full           | 300            | 0.0              | 0.0 |
| Approach            | 263                   | 4.8      | 263     | 4.8      |       | 0.231        |               | 2.8            | LOS A               | 1.2                    | 8.8  |                |                |                  |     |
| West: Dall          | kin Cres              | cent     |         |          |       |              |               |                |                     |                        |      |                |                |                  |     |
| Lane 1 <sup>d</sup> | 76                    | 0.0      | 76      | 0.0      | 769   | 0.099        | 100           | 7.0            | LOS A               | 0.6                    | 4.2  | Full           | 420            | 0.0              | 0.0 |

| Approach        | 76   | 0.0 | 76   | 0.0 | 0.099 | 7.0 | LOS A | 0.6 | 4.2  |  |
|-----------------|------|-----|------|-----|-------|-----|-------|-----|------|--|
| All<br>Vehicles | 1183 | 2.2 | 1183 | 2.2 | 0.447 | 3.4 | LOS A | 3.1 | 22.1 |  |

Lane LOS values are based on average delay per lane.

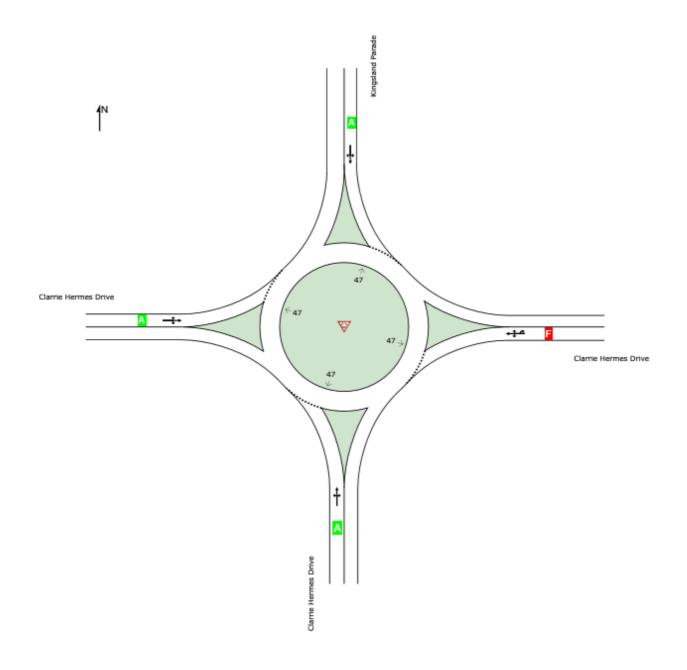
Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

# **W** Site: 101C [AM Development 2024 Kingsland Parade and Clarrie Hermes Drive Weekday Peak 8:00am - 9:00am (Site Folder: Development)]

NA Site Category: (None) Roundabout

|     |       | Appro | aches |      | Intersection |
|-----|-------|-------|-------|------|--------------|
|     | South | East  | North | West | Intersection |
| LOS | А     | F     | А     | А    | D            |



Lane LOS values are based on average delay per lane.

| Vehi | cle Movemer | t Performanc     | e          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |        |       |
|------|-------------|------------------|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------|------|--------|-------|
| Mov  | Turn Mov    | Demand           | Arrival    | Deg. | Aver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level of | 95% Back O | f Prop. | Eff. | Aver.  | Aver. |
| ID   | Class       | Flows            | Flows      | Satn | Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Service  | Queue      | Que     | Stop | No. of | Speed |
|      |             | [ Total HV ] [ ] | Fotal HV ] |      | , in the second s |          | [Veh. Dis  | i]      | Rate | Cycles |       |

|        |          |            | veh/h | %    | veh/h   | %    | v/c   | sec   |       | veh  | m     |      |      |      | km/h |
|--------|----------|------------|-------|------|---------|------|-------|-------|-------|------|-------|------|------|------|------|
| South  | n: Clarr | rie Herme  |       |      | VOII/II | 70   | 110   | 000   |       | Voli |       |      |      |      |      |
| 1      | L2       | All MCs    | 7     | 0.0  | 7       | 0.0  | 0.045 | 4.6   | LOS A | 0.3  | 2.1   | 0.76 | 0.66 | 0.76 | 39.9 |
| 2      | T1       | All MCs    | 4     | 0.0  | 4       | 0.0  | 0.045 | 3.5   | LOS A | 0.3  | 2.1   | 0.76 | 0.66 | 0.76 | 34.1 |
| 3      | R2       | All MCs    | 24    | 0.0  | 24      | 0.0  | 0.045 | 10.4  | LOS A | 0.3  | 2.1   | 0.76 | 0.66 | 0.76 | 39.6 |
| Appro  | bach     |            | 36    | 0.0  | 36      | 0.0  | 0.045 | 8.4   | LOS A | 0.3  | 2.1   | 0.76 | 0.66 | 0.76 | 39.2 |
| East:  | Clarrie  | e Hermes   | Drive |      |         |      |       |       |       |      |       |      |      |      |      |
| 4      | L2       | All MCs    | 34    | 0.0  | 34      | 0.0  | 1.089 | 99.3  | LOS F | 61.8 | 455.7 | 1.00 | 2.09 | 3.59 | 14.4 |
| 5      | T1       | All MCs    | 657   | 5.8  | 657     | 5.8  | 1.089 | 99.5  | LOS F | 61.8 | 455.7 | 1.00 | 2.09 | 3.59 | 18.8 |
| 6      | R2       | All MCs    | 36    | 20.6 | 36      | 20.6 | 1.089 | 108.3 | LOS F | 61.8 | 455.7 | 1.00 | 2.09 | 3.59 | 12.5 |
| 6u     | U        | All MCs    | 6     | 0.0  | 6       | 0.0  | 1.089 | 110.3 | LOS F | 61.8 | 455.7 | 1.00 | 2.09 | 3.59 | 18.9 |
| Appro  | bach     |            | 733   | 6.2  | 733     | 6.2  | 1.089 | 100.0 | LOS F | 61.8 | 455.7 | 1.00 | 2.09 | 3.59 | 18.3 |
| North  | : Kings  | sland Para | ade   |      |         |      |       |       |       |      |       |      |      |      |      |
| 7      | L2       | All MCs    | 278   | 4.2  | 278     | 4.2  | 0.572 | 7.0   | LOS A | 4.7  | 34.1  | 0.80 | 0.80 | 0.99 | 32.9 |
| 8      | T1       | All MCs    | 3     | 0.0  | 3       | 0.0  | 0.572 | 6.7   | LOS A | 4.7  | 34.1  | 0.80 | 0.80 | 0.99 | 28.3 |
| 9      | R2       | All MCs    | 152   | 3.5  | 152     | 3.5  | 0.572 | 11.5  | LOS A | 4.7  | 34.1  | 0.80 | 0.80 | 0.99 | 32.4 |
| Appro  | bach     |            | 433   | 3.9  | 433     | 3.9  | 0.572 | 8.6   | LOS A | 4.7  | 34.1  | 0.80 | 0.80 | 0.99 | 32.7 |
| West   | : Clarri | e Hermes   | Drive |      |         |      |       |       |       |      |       |      |      |      |      |
| 10     | L2       | All MCs    | 113   | 3.7  | 113     | 3.7  | 0.417 | 5.2   | LOS A | 3.0  | 22.1  | 0.26 | 0.41 | 0.26 | 42.2 |
| 11     | T1       | All MCs    | 547   | 6.5  | 547     | 6.5  | 0.417 | 5.1   | LOS A | 3.0  | 22.1  | 0.26 | 0.41 | 0.26 | 62.2 |
| 12     | R2       | All MCs    | 8     | 0.0  | 8       | 0.0  | 0.417 | 12.9  | LOS A | 3.0  | 22.1  | 0.26 | 0.41 | 0.26 | 55.2 |
| Appro  | bach     |            | 668   | 6.0  | 668     | 6.0  | 0.417 | 5.2   | LOS A | 3.0  | 22.1  | 0.26 | 0.41 | 0.26 | 58.9 |
| All Ve | hicles   |            | 1869  | 5.5  | 1869    | 5.5  | 1.089 | 43.2  | LOS D | 61.8 | 455.7 | 0.69 | 1.16 | 1.74 | 27.9 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Lane Use            | e and P                            | erfor   | mance   | l.    |       |              |               |                |                     |                       |       |                |                |                  |                                |
|---------------------|------------------------------------|---------|---------|-------|-------|--------------|---------------|----------------|---------------------|-----------------------|-------|----------------|----------------|------------------|--------------------------------|
|                     | Dem<br>Flo <sup>r</sup><br>[ Total | WS      | Arrival | Flows | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% B<br>Que<br>[ Veh |       | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. E | <sup>&gt;</sup> rob.<br>Block. |
|                     | veh/h                              | %       | veh/h   | %     | veh/h | v/c          | %             | sec            |                     | [ ven                 | m     |                | m              | %                | %                              |
| South: Cla          | irrie Her                          | mes D   | rive    |       |       |              |               |                |                     |                       |       |                |                |                  |                                |
| Lane 1 <sup>d</sup> | 36                                 | 0.0     | 36      | 0.0   | 789   | 0.045        | 100           | 8.4            | LOS A               | 0.3                   | 2.1   | Full           | 115            | 0.0              | 0.0                            |
| Approach            | 36                                 | 0.0     | 36      | 0.0   |       | 0.045        |               | 8.4            | LOS A               | 0.3                   | 2.1   |                |                |                  |                                |
| East: Clar          | rie Herm                           | nes Dri | ve      |       |       |              |               |                |                     |                       |       |                |                |                  |                                |
| Lane 1 <sup>d</sup> | 733                                | 6.2     | 733     | 6.2   | 673   | 1.089        | 100           | 100.0          | LOS F               | 61.8                  | 455.7 | Full           | 325            | -11.0            | <mark>16.1</mark>              |
| Approach            | 733                                | 6.2     | 733     | 6.2   |       | 1.089        |               | 100.0          | LOS F               | 61.8                  | 455.7 |                |                |                  |                                |
| North: Kin          | gsland F                           | Parade  |         |       |       |              |               |                |                     |                       |       |                |                |                  |                                |
| Lane 1 <sup>d</sup> | 433                                | 3.9     | 433     | 3.9   | 756   | 0.572        | 100           | 8.6            | LOS A               | 4.7                   | 34.1  | Full           | 65             | 0.0              | 0.0                            |
| Approach            | 433                                | 3.9     | 433     | 3.9   |       | 0.572        |               | 8.6            | LOS A               | 4.7                   | 34.1  |                |                |                  |                                |
| West: Clar          | rie Herr                           | nes Dr  | ive     |       |       |              |               |                |                     |                       |       |                |                |                  |                                |
| Lane 1 <sup>d</sup> | 668                                | 6.0     | 668     | 6.0   | 1605  | 0.417        | 100           | 5.2            | LOS A               | 3.0                   | 22.1  | Full           | 310            | 0.0              | 0.0                            |

| Approach        | 668  | 6.0 | 668  | 6.0 | 0.417 | 5.2  | LOS A | 3.0  | 22.1  |  |
|-----------------|------|-----|------|-----|-------|------|-------|------|-------|--|
| All<br>Vehicles | 1869 | 5.5 | 1869 | 5.5 | 1.089 | 43.2 | LOS D | 61.8 | 455.7 |  |

Lane LOS values are based on average delay per lane.

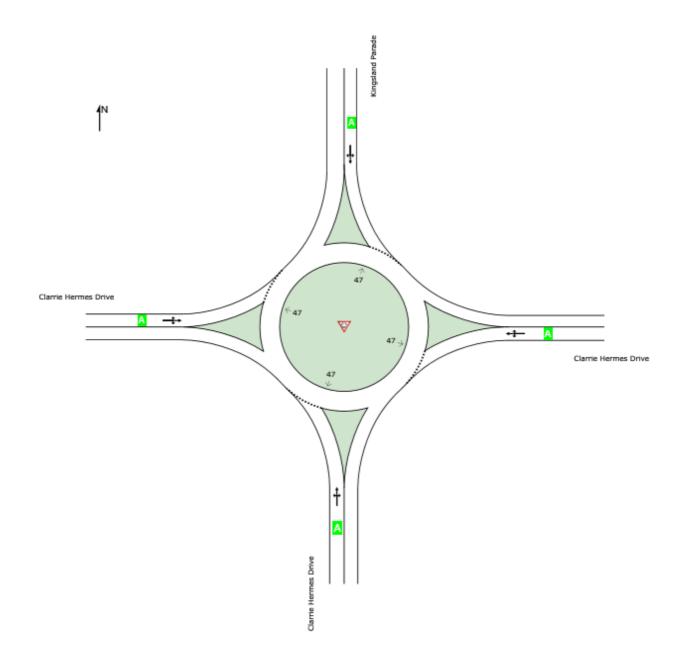
Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

## **W** Site: 101D [PM Development 2024 Kingsland Parade and Clarrie Hermes Drive Weekday Peak 5:15pm - 6:15pm (Site Folder: Development)]

NA Site Category: (None) Roundabout

|     |       | Appro | aches |      | Intersection |
|-----|-------|-------|-------|------|--------------|
|     | South | East  | North | West | Intersection |
| LOS | А     | А     | А     | А    | А            |



Lane LOS values are based on average delay per lane.

| Vehi | cle Movemer | t Performanc     | e          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |        |       |
|------|-------------|------------------|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------|------|--------|-------|
| Mov  | Turn Mov    | Demand           | Arrival    | Deg. | Aver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level of | 95% Back O | f Prop. | Eff. | Aver.  | Aver. |
| ID   | Class       | Flows            | Flows      | Satn | Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Service  | Queue      | Que     | Stop | No. of | Speed |
|      |             | [ Total HV ] [ ] | Fotal HV ] |      | , in the second s |          | [Veh. Dis  | i]      | Rate | Cycles |       |

|        |         |            | veh/h   | %   | veh/h | %   | v/c   | sec  |       | veh | m    |      |      |      | km/h |
|--------|---------|------------|---------|-----|-------|-----|-------|------|-------|-----|------|------|------|------|------|
| South  | : Clarr | ie Herme   | s Drive |     |       |     |       |      |       |     |      |      |      |      |      |
| 1      | L2      | All MCs    | 1       | 0.0 | 1     | 0.0 | 0.033 | 7.9  | LOS A | 0.2 | 1.7  | 0.87 | 0.69 | 0.87 | 39.2 |
| 2      | T1      | All MCs    | 12      | 0.0 | 12    | 0.0 | 0.033 | 6.8  | LOS A | 0.2 | 1.7  | 0.87 | 0.69 | 0.87 | 33.0 |
| 3      | R2      | All MCs    | 8       | 0.0 | 8     | 0.0 | 0.033 | 13.8 | LOS A | 0.2 | 1.7  | 0.87 | 0.69 | 0.87 | 38.9 |
| Appro  | bach    |            | 21      | 0.0 | 21    | 0.0 | 0.033 | 9.6  | LOS A | 0.2 | 1.7  | 0.87 | 0.69 | 0.87 | 36.4 |
| East:  | Clarrie | e Hermes   | Drive   |     |       |     |       |      |       |     |      |      |      |      |      |
| 4      | L2      | All MCs    | 41      | 0.0 | 41    | 0.0 | 0.655 | 6.1  | LOS A | 6.1 | 43.3 | 0.64 | 0.57 | 0.64 | 51.4 |
| 5      | T1      | All MCs    | 617     | 0.9 | 617   | 0.9 | 0.655 | 6.0  | LOS A | 6.1 | 43.3 | 0.64 | 0.57 | 0.64 | 57.8 |
| 6      | R2      | All MCs    | 276     | 1.5 | 276   | 1.5 | 0.655 | 13.9 | LOS A | 6.1 | 43.3 | 0.64 | 0.57 | 0.64 | 49.0 |
| Appro  | bach    |            | 934     | 1.0 | 934   | 1.0 | 0.655 | 8.4  | LOS A | 6.1 | 43.3 | 0.64 | 0.57 | 0.64 | 55.4 |
| North  | : Kings | sland Para | ade     |     |       |     |       |      |       |     |      |      |      |      |      |
| 7      | L2      | All MCs    | 197     | 0.0 | 197   | 0.0 | 0.470 | 4.3  | LOS A | 3.9 | 27.7 | 0.86 | 0.72 | 0.90 | 34.4 |
| 8      | T1      | All MCs    | 6       | 0.0 | 6     | 0.0 | 0.470 | 4.1  | LOS A | 3.9 | 27.7 | 0.86 | 0.72 | 0.90 | 30.7 |
| 9      | R2      | All MCs    | 216     | 4.4 | 216   | 4.4 | 0.470 | 8.8  | LOS A | 3.9 | 27.7 | 0.86 | 0.72 | 0.90 | 34.0 |
| Appro  | bach    |            | 419     | 2.3 | 419   | 2.3 | 0.470 | 6.6  | LOS A | 3.9 | 27.7 | 0.86 | 0.72 | 0.90 | 34.2 |
| West   | Clarri  | e Hermes   | Drive   |     |       |     |       |      |       |     |      |      |      |      |      |
| 10     | L2      | All MCs    | 280     | 1.1 | 280   | 1.1 | 0.698 | 7.2  | LOS A | 7.5 | 53.3 | 0.72 | 0.63 | 0.77 | 39.0 |
| 11     | T1      | All MCs    | 652     | 2.4 | 652   | 2.4 | 0.698 | 7.2  | LOS A | 7.5 | 53.3 | 0.72 | 0.63 | 0.77 | 58.6 |
| 12     | R2      | All MCs    | 18      | 0.0 | 18    | 0.0 | 0.698 | 15.0 | LOS B | 7.5 | 53.3 | 0.72 | 0.63 | 0.77 | 50.4 |
| Appro  | bach    |            | 949     | 2.0 | 949   | 2.0 | 0.698 | 7.4  | LOS A | 7.5 | 53.3 | 0.72 | 0.63 | 0.77 | 52.9 |
| All Ve | hicles  |            | 2323    | 1.6 | 2323  | 1.6 | 0.698 | 7.7  | LOS A | 7.5 | 53.3 | 0.71 | 0.62 | 0.74 | 50.0 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Lane Us             | e and P          | Perfor    | mance            |           |       |              |               |                |                     |       |                |                |                |                  |     |
|---------------------|------------------|-----------|------------------|-----------|-------|--------------|---------------|----------------|---------------------|-------|----------------|----------------|----------------|------------------|-----|
|                     | Dem<br>Flo       |           | Arrival          | Flows     | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service |       | lack Of<br>eue | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. B |     |
|                     | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | veh/h | v/c          | %             | sec            |                     | [ Veh | Dist]<br>m     |                | m              | %                | %   |
| South: Cla          | arrie Her        | mes D     | rive             |           |       |              |               |                |                     |       |                |                |                |                  |     |
| Lane 1 <sup>d</sup> | 21               | 0.0       | 21               | 0.0       | 629   | 0.033        | 100           | 9.6            | LOS A               | 0.2   | 1.7            | Full           | 115            | 0.0              | 0.0 |
| Approach            | 21               | 0.0       | 21               | 0.0       |       | 0.033        |               | 9.6            | LOS A               | 0.2   | 1.7            |                |                |                  |     |
| East: Clar          | rie Hern         | nes Dri   | ve               |           |       |              |               |                |                     |       |                |                |                |                  |     |
| Lane 1 <sup>d</sup> | 934              | 1.0       | 934              | 1.0       | 1425  | 0.655        | 100           | 8.4            | LOS A               | 6.1   | 43.3           | Full           | 325            | 0.0              | 0.0 |
| Approach            | 934              | 1.0       | 934              | 1.0       |       | 0.655        |               | 8.4            | LOS A               | 6.1   | 43.3           |                |                |                  |     |
| North: Kin          | gsland F         | Parade    | •                |           |       |              |               |                |                     |       |                |                |                |                  |     |
| Lane 1 <sup>d</sup> | 419              | 2.3       | 419              | 2.3       | 891   | 0.470        | 100           | 6.6            | LOS A               | 3.9   | 27.7           | Full           | 65             | 0.0              | 0.0 |
| Approach            | 419              | 2.3       | 419              | 2.3       |       | 0.470        |               | 6.6            | LOS A               | 3.9   | 27.7           |                |                |                  |     |
| West: Cla           | rrie Herr        | nes Dr    | ive              |           |       |              |               |                |                     |       |                |                |                |                  |     |
| Lane 1 <sup>d</sup> | 949              | 2.0       | 949              | 2.0       | 1360  | 0.698        | 100           | 7.4            | LOS A               | 7.5   | 53.3           | Full           | 310            | 0.0              | 0.0 |
| Approach            | 949              | 2.0       | 949              | 2.0       |       | 0.698        |               | 7.4            | LOS A               | 7.5   | 53.3           |                |                |                  |     |

| All      | 2323 | 1.6 | 2323 | 1.6 | 0.698 | 7.7 | LOS A | 7.5 | 53.3 |
|----------|------|-----|------|-----|-------|-----|-------|-----|------|
| Vehicles |      |     |      |     |       |     |       |     |      |

Lane LOS values are based on average delay per lane.

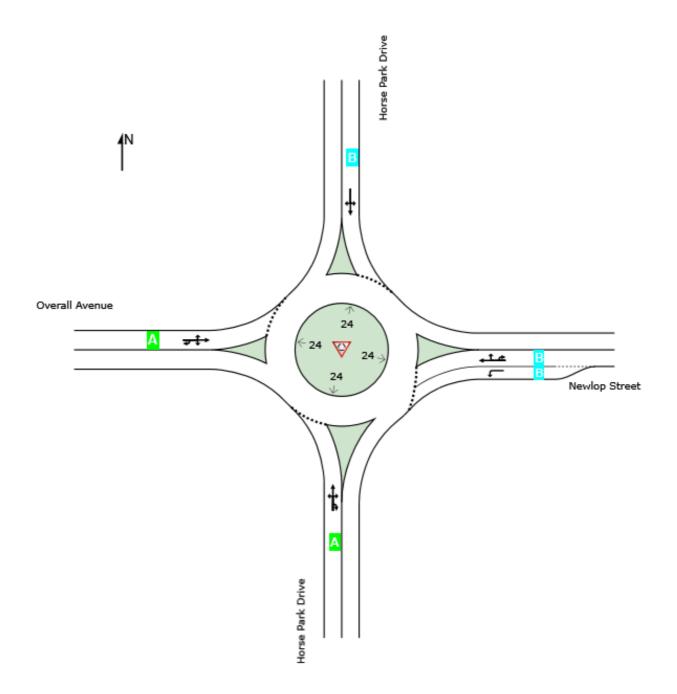
Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

# **W** Site: 101E [AM Development 2024 Overall Avenue and Horse Park Drive Weekday Peak 8:00am - 9:00am (Site Folder: Development)]

New Site Site Category: (None) Roundabout

|     |       | Appro | aches |      | Intersection |
|-----|-------|-------|-------|------|--------------|
|     | South | East  | North | West | Intersection |
| LOS | А     | В     | В     | А    | А            |



Lane LOS values are based on average delay per lane.

| Vehi | cle Movemen | t Performanc     | e:          |      |       |          |                    |     |      |        |       |
|------|-------------|------------------|-------------|------|-------|----------|--------------------|-----|------|--------|-------|
| Mov  | Turn Mov    | Demand           | Arrival     |      |       | Level of | 95% Back (         |     | Eff. | Aver.  | Aver. |
| ID   | Class       | Flows            | Flows       | Satn | Delay | Service  | Queue<br>[ Veh. Di | Que |      | No. of | Speed |
|      |             | [ Total HV ] [ ] | iotar fiv j |      |       |          | [ven. Di           | stj | Rate | Cycles |       |

|        |         |            | veh/h | %   | veh/h | %   | v/c   | sec  |       | veh  | m     |      |      |      | km/h |
|--------|---------|------------|-------|-----|-------|-----|-------|------|-------|------|-------|------|------|------|------|
| South  | n: Hors | e Park Dr  | ive   |     |       |     |       |      |       |      |       |      |      |      |      |
| 1      | L2      | All MCs    | 71    | 3.0 | 71    | 3.0 | 0.580 | 9.2  | LOS A | 5.0  | 36.4  | 0.76 | 0.71 | 0.83 | 37.6 |
| 2      | T1      | All MCs    | 423   | 5.0 | 423   | 5.0 | 0.580 | 9.8  | LOS A | 5.0  | 36.4  | 0.76 | 0.71 | 0.83 | 60.4 |
| 3      | R2      | All MCs    | 41    | 0.0 | 41    | 0.0 | 0.580 | 14.7 | LOS B | 5.0  | 36.4  | 0.76 | 0.71 | 0.83 | 41.2 |
| 3u     | U       | All MCs    | 2     | 0.0 | 2     | 0.0 | 0.580 | 17.2 | LOS B | 5.0  | 36.4  | 0.76 | 0.71 | 0.83 | 59.5 |
| Appro  | oach    |            | 537   | 4.3 | 537   | 4.3 | 0.580 | 10.1 | LOS A | 5.0  | 36.4  | 0.76 | 0.71 | 0.83 | 56.0 |
| East:  | Newlo   | p Street   |       |     |       |     |       |      |       |      |       |      |      |      |      |
| 4      | L2      | All MCs    | 73    | 4.3 | 73    | 4.3 | 0.266 | 17.6 | LOS B | 2.0  | 14.6  | 1.00 | 0.87 | 1.00 | 35.6 |
| 5      | T1      | All MCs    | 105   | 2.0 | 105   | 2.0 | 0.298 | 14.2 | LOS A | 2.7  | 19.5  | 1.00 | 0.86 | 1.00 | 29.6 |
| 6      | R2      | All MCs    | 12    | 0.0 | 12    | 0.0 | 0.298 | 19.1 | LOS B | 2.7  | 19.5  | 1.00 | 0.86 | 1.00 | 37.9 |
| 6u     | U       | All MCs    | 1     | 0.0 | 1     | 0.0 | 0.298 | 22.8 | LOS B | 2.7  | 19.5  | 1.00 | 0.86 | 1.00 | 32.3 |
| Appro  | oach    |            | 191   | 2.8 | 191   | 2.8 | 0.298 | 15.8 | LOS B | 2.7  | 19.5  | 1.00 | 0.87 | 1.00 | 33.3 |
| North  | : Hors  | e Park Dri | ve    |     |       |     |       |      |       |      |       |      |      |      |      |
| 7      | L2      | All MCs    | 9     | 0.0 | 9     | 0.0 | 0.896 | 14.7 | LOS B | 19.4 | 139.8 | 1.00 | 0.92 | 1.39 | 49.5 |
| 8      | T1      | All MCs    | 745   | 3.5 | 745   | 3.5 | 0.896 | 15.4 | LOS B | 19.4 | 139.8 | 1.00 | 0.92 | 1.39 | 55.3 |
| 9      | R2      | All MCs    | 269   | 3.5 | 269   | 3.5 | 0.896 | 20.5 | LOS B | 19.4 | 139.8 | 1.00 | 0.92 | 1.39 | 46.1 |
| Appro  | oach    |            | 1024  | 3.5 | 1024  | 3.5 | 0.896 | 16.7 | LOS B | 19.4 | 139.8 | 1.00 | 0.92 | 1.39 | 53.3 |
| West   | : Overa | all Avenue |       |     |       |     |       |      |       |      |       |      |      |      |      |
| 10     | L2      | All MCs    | 131   | 4.8 | 131   | 4.8 | 0.378 | 5.0  | LOS A | 2.4  | 17.6  | 0.66 | 0.65 | 0.66 | 41.9 |
| 11     | T1      | All MCs    | 46    | 9.1 | 46    | 9.1 | 0.378 | 4.8  | LOS A | 2.4  | 17.6  | 0.66 | 0.65 | 0.66 | 36.3 |
| 12     | R2      | All MCs    | 196   | 1.6 | 196   | 1.6 | 0.378 | 9.6  | LOS A | 2.4  | 17.6  | 0.66 | 0.65 | 0.66 | 40.9 |
| 12u    | U       | All MCs    | 2     | 0.0 | 2     | 0.0 | 0.378 | 11.4 | LOS A | 2.4  | 17.6  | 0.66 | 0.65 | 0.66 | 16.1 |
| Appro  | oach    |            | 375   | 3.7 | 375   | 3.7 | 0.378 | 7.4  | LOS A | 2.4  | 17.6  | 0.66 | 0.65 | 0.66 | 40.8 |
| All Ve | ehicles |            | 2126  | 3.7 | 2126  | 3.7 | 0.896 | 13.3 | LOS A | 19.4 | 139.8 | 0.88 | 0.81 | 1.09 | 50.5 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Lane Use            | e and P          | erfor     | mance            |           |       |              |               |                |                     |              |             |                |                |                  |     |
|---------------------|------------------|-----------|------------------|-----------|-------|--------------|---------------|----------------|---------------------|--------------|-------------|----------------|----------------|------------------|-----|
|                     | Dem<br>Flo       | WS        | Arrival          |           | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% B<br>Que | eue         | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. B |     |
|                     | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | veh/h | v/c          | %             | sec            |                     | [Veh         | Dist ]<br>m |                | m              | %                | %   |
| South: Ho           | rse Park         | Drive     |                  |           |       |              |               |                |                     |              |             |                |                |                  |     |
| Lane 1 <sup>d</sup> | 537              | 4.3       | 537              | 4.3       | 926   | 0.580        | 100           | 10.1           | LOS A               | 5.0          | 36.4        | Full           | 450            | 0.0              | 0.0 |
| Approach            | 537              | 4.3       | 537              | 4.3       |       | 0.580        |               | 10.1           | LOS A               | 5.0          | 36.4        |                |                |                  |     |
| East: New           | lop Stre         | et        |                  |           |       |              |               |                |                     |              |             |                |                |                  |     |
| Lane 1              | 73               | 4.3       | 73               | 4.3       | 273   | 0.266        | 100           | 17.6           | LOS B               | 2.0          | 14.6        | Short          | 36             | 0.0              | NA  |
| Lane 2 <sup>d</sup> | 118              | 1.8       | 118              | 1.8       | 396   | 0.298        | 100           | 14.8           | LOS B               | 2.7          | 19.5        | Full           | 170            | 0.0              | 0.0 |
| Approach            | 191              | 2.8       | 191              | 2.8       |       | 0.298        |               | 15.8           | LOS B               | 2.7          | 19.5        |                |                |                  |     |
| North: Hor          | se Park          | Drive     |                  |           |       |              |               |                |                     |              |             |                |                |                  |     |
| Lane 1 <sup>d</sup> | 1024             | 3.5       | 1024             | 3.5       | 1143  | 0.896        | 100           | 16.7           | LOS B               | 19.4         | 139.8       | Full           | 500            | 0.0              | 0.0 |

| Approach            | 1024     | 3.5 | 1024 | 3.5 |     | 0.896 |     | 16.7 | LOS B | 19.4 | 139.8 |      |     |     |     |
|---------------------|----------|-----|------|-----|-----|-------|-----|------|-------|------|-------|------|-----|-----|-----|
| West: Ove           | rall Ave | nue |      |     |     |       |     |      |       |      |       |      |     |     |     |
| Lane 1 <sup>d</sup> | 375      | 3.7 | 375  | 3.7 | 991 | 0.378 | 100 | 7.4  | LOS A | 2.4  | 17.6  | Full | 100 | 0.0 | 0.0 |
| Approach            | 375      | 3.7 | 375  | 3.7 |     | 0.378 |     | 7.4  | LOS A | 2.4  | 17.6  |      |     |     |     |
| All<br>Vehicles     | 2126     | 3.7 | 2126 | 3.7 |     | 0.896 |     | 13.3 | LOS A | 19.4 | 139.8 |      |     |     |     |

Lane LOS values are based on average delay per lane.

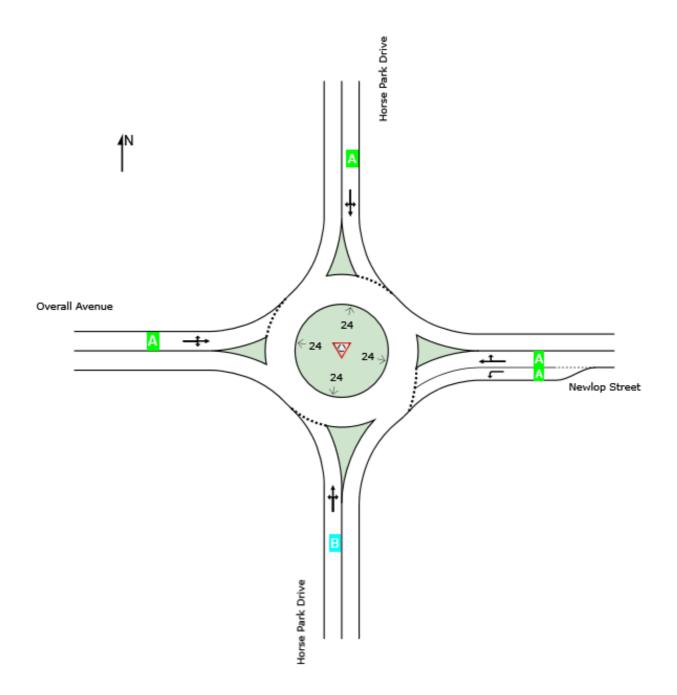
Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

## **W** Site: 101E [PM Development 2024 Overall Avenue and Horse Park Drive Weekday Peak 5:15pm - 6:15pm (Site Folder: Development)]

New Site Site Category: (None) Roundabout

|     |       | Appro | aches |      | Intersection |
|-----|-------|-------|-------|------|--------------|
|     | South | East  | North | West | Intersection |
| LOS | В     | А     | А     | Α    | Α            |



Lane LOS values are based on average delay per lane.

| Vehi | cle Movemen | t Performand     | e          |      |       |          |                |                 |      |        |  |
|------|-------------|------------------|------------|------|-------|----------|----------------|-----------------|------|--------|--|
| Mov  | Turn Mov    | Demand           | Arrival    |      |       | Level of | 95% Bac        |                 |      | Aver.  |  |
| ID   | Class       | Flows            | Flows      | Satn | Delay | Service  | Queu<br>[ Veh. | e Que<br>Dist 1 |      | No. of |  |
|      |             | [ Total HV ] [ ] | iolai HV j |      |       |          | [ ven.         | Distj           | Rate | Cycles |  |

|        |         |            | veh/h | %   | veh/h | %   | v/c   | sec  |       | veh  | m     |      |      |      | km/h |
|--------|---------|------------|-------|-----|-------|-----|-------|------|-------|------|-------|------|------|------|------|
| South  | n: Hors | e Park Dr  | ive   |     |       |     |       |      |       |      |       |      |      |      |      |
| 1      | L2      | All MCs    | 143   | 1.5 | 143   | 1.5 | 0.894 | 15.8 | LOS B | 18.9 | 134.1 | 1.00 | 0.94 | 1.45 | 34.1 |
| 2      | T1      | All MCs    | 749   | 1.4 | 749   | 1.4 | 0.894 | 16.3 | LOS B | 18.9 | 134.1 | 1.00 | 0.94 | 1.45 | 55.6 |
| 3      | R2      | All MCs    | 81    | 2.6 | 81    | 2.6 | 0.894 | 21.4 | LOS B | 18.9 | 134.1 | 1.00 | 0.94 | 1.45 | 47.1 |
| Appro  | bach    |            | 974   | 1.5 | 974   | 1.5 | 0.894 | 16.6 | LOS B | 18.9 | 134.1 | 1.00 | 0.94 | 1.45 | 51.9 |
| East:  | Newlo   | p Street   |       |     |       |     |       |      |       |      |       |      |      |      |      |
| 4      | L2      | All MCs    | 52    | 0.0 | 52    | 0.0 | 0.075 | 7.2  | LOS A | 0.5  | 3.3   | 0.75 | 0.68 | 0.75 | 42.4 |
| 5      | T1      | All MCs    | 93    | 0.0 | 93    | 0.0 | 0.109 | 5.8  | LOS A | 0.8  | 5.5   | 0.76 | 0.62 | 0.76 | 37.0 |
| 6      | R2      | All MCs    | 8     | 0.0 | 8     | 0.0 | 0.109 | 10.8 | LOS A | 0.8  | 5.5   | 0.76 | 0.62 | 0.76 | 42.6 |
| Appro  | bach    |            | 153   | 0.0 | 153   | 0.0 | 0.109 | 6.6  | LOS A | 0.8  | 5.5   | 0.76 | 0.64 | 0.76 | 40.0 |
| North  | : Horse | e Park Dri | ive   |     |       |     |       |      |       |      |       |      |      |      |      |
| 7      | L2      | All MCs    | 18    | 0.0 | 18    | 0.0 | 0.564 | 7.2  | LOS A | 4.6  | 32.6  | 0.63 | 0.62 | 0.63 | 55.9 |
| 8      | T1      | All MCs    | 427   | 1.5 | 427   | 1.5 | 0.564 | 7.7  | LOS A | 4.6  | 32.6  | 0.63 | 0.62 | 0.63 | 61.4 |
| 9      | R2      | All MCs    | 207   | 2.5 | 207   | 2.5 | 0.564 | 12.9 | LOS A | 4.6  | 32.6  | 0.63 | 0.62 | 0.63 | 52.3 |
| Appro  | bach    |            | 653   | 1.8 | 653   | 1.8 | 0.564 | 9.3  | LOS A | 4.6  | 32.6  | 0.63 | 0.62 | 0.63 | 58.9 |
| West   | : Overa | all Avenue | 9     |     |       |     |       |      |       |      |       |      |      |      |      |
| 10     | L2      | All MCs    | 194   | 2.7 | 194   | 2.7 | 0.592 | 10.9 | LOS A | 5.8  | 41.4  | 1.00 | 0.91 | 1.22 | 39.0 |
| 11     | T1      | All MCs    | 91    | 2.3 | 91    | 2.3 | 0.592 | 10.7 | LOS A | 5.8  | 41.4  | 1.00 | 0.91 | 1.22 | 31.8 |
| 12     | R2      | All MCs    | 86    | 0.0 | 86    | 0.0 | 0.592 | 15.5 | LOS B | 5.8  | 41.4  | 1.00 | 0.91 | 1.22 | 37.8 |
| Appro  | bach    |            | 371   | 2.0 | 371   | 2.0 | 0.592 | 11.9 | LOS A | 5.8  | 41.4  | 1.00 | 0.91 | 1.22 | 37.5 |
| All Ve | hicles  |            | 2149  | 1.6 | 2149  | 1.6 | 0.894 | 12.9 | LOS A | 18.9 | 134.1 | 0.87 | 0.82 | 1.11 | 51.0 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Lane Use            | e and P          | Perfor             | mance            |           |       |              |               |                |                     |       |               |                |                |                  |     |
|---------------------|------------------|--------------------|------------------|-----------|-------|--------------|---------------|----------------|---------------------|-------|---------------|----------------|----------------|------------------|-----|
|                     | Dem<br>Flo       | WS                 | Arrival          |           | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | Qu    | ack Of<br>eue | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. E |     |
|                     | [ Total<br>veh/h | HV ]<br>%          | [ Total<br>veh/h | HV ]<br>% | veh/h | v/c          | %             | sec            |                     | [ Veh | Dist]<br>m    |                | m              | %                | %   |
| South: Ho           | rse Parl         | <pre>c Drive</pre> |                  |           |       |              |               |                |                     |       |               |                |                |                  |     |
| Lane 1 <sup>d</sup> | 974              | 1.5                | 974              | 1.5       | 1089  | 0.894        | 100           | 16.6           | LOS B               | 18.9  | 134.1         | Full           | 450            | 0.0              | 0.0 |
| Approach            | 974              | 1.5                | 974              | 1.5       |       | 0.894        |               | 16.6           | LOS B               | 18.9  | 134.1         |                |                |                  |     |
| East: New           | lop Stre         | et                 |                  |           |       |              |               |                |                     |       |               |                |                |                  |     |
| Lane 1              | 52               | 0.0                | 52               | 0.0       | 688   | 0.075        | 100           | 7.2            | LOS A               | 0.5   | 3.3           | Short          | 36             | 0.0              | NA  |
| Lane 2 <sup>d</sup> | 101              | 0.0                | 101              | 0.0       | 926   | 0.109        | 100           | 6.2            | LOS A               | 0.8   | 5.5           | Full           | 170            | 0.0              | 0.0 |
| Approach            | 153              | 0.0                | 153              | 0.0       |       | 0.109        |               | 6.6            | LOS A               | 0.8   | 5.5           |                |                |                  |     |
| North: Hor          | rse Park         | Drive              |                  |           |       |              |               |                |                     |       |               |                |                |                  |     |
| Lane 1 <sup>d</sup> | 653              | 1.8                | 653              | 1.8       | 1156  | 0.564        | 100           | 9.3            | LOS A               | 4.6   | 32.6          | Full           | 500            | 0.0              | 0.0 |
| Approach            | 653              | 1.8                | 653              | 1.8       |       | 0.564        |               | 9.3            | LOS A               | 4.6   | 32.6          |                |                |                  |     |
| West: Ove           | erall Ave        | nue                |                  |           |       |              |               |                |                     |       |               |                |                |                  |     |
| Lane 1 <sup>d</sup> | 371              | 2.0                | 371              | 2.0       | 626   | 0.592        | 100           | 11.9           | LOS A               | 5.8   | 41.4          | Full           | 100            | 0.0              | 0.0 |

| Approach        | 371  | 2.0 | 371  | 2.0 | 0.592 | 11.9 | LOS A | 5.8  | 41.4  |
|-----------------|------|-----|------|-----|-------|------|-------|------|-------|
| All<br>Vehicles | 2149 | 1.6 | 2149 | 1.6 | 0.894 | 12.9 | LOS A | 18.9 | 134.1 |

Lane LOS values are based on average delay per lane.

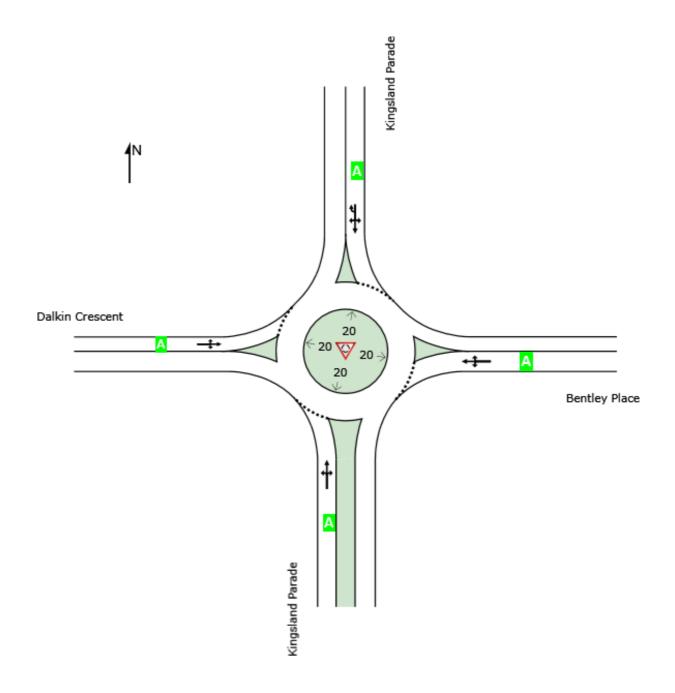
Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).


HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

### V Site: 101A [AM Future 2034 Weekday Peak 8:00am - 9:00am (Site Folder: Future)]

New Site Site Category: (None) Roundabout

| Γ |     |       | Appro | aches |      | Intersection |
|---|-----|-------|-------|-------|------|--------------|
|   |     | South | East  | North | West | Intersection |
| ſ | LOS | А     | А     | А     | А    | А            |



Lane LOS values are based on average delay per lane.

| Vehicle Movement Performance |          |                           |                     |      |       |          |                |             |       |      |                  |       |
|------------------------------|----------|---------------------------|---------------------|------|-------|----------|----------------|-------------|-------|------|------------------|-------|
| Mov                          | Turn Mov | Demand                    | Arrival             |      |       | Level of | 95% Ba         |             | Prop. | Eff. | Aver.            | Aver. |
| ID                           | Class    | Flows<br>[ Total HV ] [ ] | Flows<br>[otal HV ] | Satn | Delay | Service  | Queı<br>[ Veh. | ue<br>Dist] | Que   |      | No. of<br>Cycles | Speed |

|        |          |            | veh/h | %        | veh/h | %        | v/c   | sec |       | veh | m    |      |      |      | km/h |
|--------|----------|------------|-------|----------|-------|----------|-------|-----|-------|-----|------|------|------|------|------|
| South  | n: King  | sland Par  |       |          |       |          |       |     |       |     |      |      |      |      |      |
| 1      | L2       | All MCs    | 40    | 13.2     | 40    | 13.2     | 0.212 | 2.2 | LOS A | 1.2 | 8.5  | 0.26 | 0.28 | 0.26 | 37.3 |
| 2      | T1       | All MCs    | 209   | 5.0      | 209   | 5.0      | 0.212 | 1.6 | LOS A | 1.2 | 8.5  | 0.26 | 0.28 | 0.26 | 36.8 |
| 3      | R2       | All MCs    | 24    | 0.0      | 24    | 0.0      | 0.212 | 5.9 | LOS A | 1.2 | 8.5  | 0.26 | 0.28 | 0.26 | 32.7 |
| Appro  | oach     |            | 274   | 5.8      | 274   | 5.8      | 0.212 | 2.1 | LOS A | 1.2 | 8.5  | 0.26 | 0.28 | 0.26 | 36.7 |
| East:  | Bentle   | ey Place   |       |          |       |          |       |     |       |     |      |      |      |      |      |
| 4      | L2       | All MCs    | 236   | 1.3      | 236   | 1.3      | 0.288 | 3.5 | LOS A | 1.5 | 10.7 | 0.50 | 0.51 | 0.50 | 31.0 |
| 5      | T1       | All MCs    | 25    | 0.0      | 25    | 0.0      | 0.288 | 2.9 | LOS A | 1.5 | 10.7 | 0.50 | 0.51 | 0.50 | 36.7 |
| 6      | R2       | All MCs    | 43    | 2.4      | 43    | 2.4      | 0.288 | 7.3 | LOS A | 1.5 | 10.7 | 0.50 | 0.51 | 0.50 | 35.1 |
| Appro  | oach     |            | 304   | 1.4      | 304   | 1.4      | 0.288 | 4.0 | LOS A | 1.5 | 10.7 | 0.50 | 0.51 | 0.50 | 32.9 |
| North  | : Kings  | sland Para | ade   |          |       |          |       |     |       |     |      |      |      |      |      |
| 7      | L2       | All MCs    | 18    | 0.0      | 18    | 0.0      | 0.242 | 4.4 | LOS A | 1.3 | 9.8  | 0.30 | 0.29 | 0.30 | 38.4 |
| 8      | T1       | All MCs    | 266   | 4.7      | 266   | 4.7      | 0.242 | 1.7 | LOS A | 1.3 | 9.8  | 0.30 | 0.29 | 0.30 | 37.1 |
| 9      | R2       | All MCs    | 14    | 0.0      | 14    | 0.0      | 0.242 | 6.0 | LOS A | 1.3 | 9.8  | 0.30 | 0.29 | 0.30 | 38.0 |
| 9u     | U        | All MCs    | 6     | 100.     | 6     | 100.     | 0.242 | 8.6 | LOS A | 1.3 | 9.8  | 0.30 | 0.29 | 0.30 | 37.2 |
| Appro  | oach     |            | 304   | 0<br>6.2 | 304   | 0<br>6.2 | 0.242 | 2.2 | LOS A | 1.3 | 9.8  | 0.30 | 0.29 | 0.30 | 37.2 |
| West   | : Dalkii | n Crescen  | ıt    |          |       |          |       |     |       |     |      |      |      |      |      |
| 10     | L2       | All MCs    |       | 0.0      | 33    | 0.0      | 0.119 | 3.4 | LOS A | 0.7 | 4.8  | 0.49 | 0.56 | 0.49 | 37.0 |
| 11     | T1       | All MCs    | 9     | 0.0      | 9     | 0.0      | 0.119 | 5.8 | LOS A | 0.7 | 4.8  | 0.49 | 0.56 | 0.49 | 37.3 |
| 12     | R2       | All MCs    | 80    | 0.0      | 80    | 0.0      | 0.119 | 7.3 | LOS A | 0.7 | 4.8  | 0.49 | 0.56 | 0.49 | 35.6 |
| Appro  | oach     |            | 122   | 0.0      | 122   | 0.0      | 0.119 | 6.1 | LOS A | 0.7 | 4.8  | 0.49 | 0.56 | 0.49 | 36.2 |
| All Ve | ehicles  |            | 1004  | 3.9      | 1004  | 3.9      | 0.288 | 3.2 | LOS A | 1.5 | 10.7 | 0.37 | 0.39 | 0.37 | 36.0 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Lane Use            | and P                              | erfor  | mance              |     |       |              |               |                |                     |                       |      |                |                |                  |        |
|---------------------|------------------------------------|--------|--------------------|-----|-------|--------------|---------------|----------------|---------------------|-----------------------|------|----------------|----------------|------------------|--------|
|                     | Dem<br>Flo <sup>r</sup><br>[ Total | WS     | Arrival<br>[ Total |     | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% B<br>Que<br>[ Veh |      | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. B | Block. |
|                     | veh/h                              | %      | veh/h              | %   | veh/h | v/c          | %             | sec            |                     |                       | m    |                | m              | %                | %      |
| South: Kin          | gsland                             | Parade | Э                  |     |       |              |               |                |                     |                       |      |                |                |                  |        |
| Lane 1 <sup>d</sup> | 274                                | 5.8    | 274                | 5.8 | 1288  | 0.212        | 100           | 2.1            | LOS A               | 1.2                   | 8.5  | Full           | 70             | 0.0              | 0.0    |
| Approach            | 274                                | 5.8    | 274                | 5.8 |       | 0.212        |               | 2.1            | LOS A               | 1.2                   | 8.5  |                |                |                  |        |
| East: Bent          | ley Plac                           | e      |                    |     |       |              |               |                |                     |                       |      |                |                |                  |        |
| Lane 1 <sup>d</sup> | 304                                | 1.4    | 304                | 1.4 | 1056  | 0.288        | 100           | 4.0            | LOS A               | 1.5                   | 10.7 | Full           | 95             | 0.0              | 0.0    |
| Approach            | 304                                | 1.4    | 304                | 1.4 |       | 0.288        |               | 4.0            | LOS A               | 1.5                   | 10.7 |                |                |                  |        |
| North: King         | gsland F                           | Parade | •                  |     |       |              |               |                |                     |                       |      |                |                |                  |        |
| Lane 1 <sup>d</sup> | 304                                | 6.2    | 304                | 6.2 | 1257  | 0.242        | 100           | 2.2            | LOS A               | 1.3                   | 9.8  | Full           | 300            | 0.0              | 0.0    |
| Approach            | 304                                | 6.2    | 304                | 6.2 |       | 0.242        |               | 2.2            | LOS A               | 1.3                   | 9.8  |                |                |                  |        |
| West: Dall          | kin Cres                           | cent   |                    |     |       |              |               |                |                     |                       |      |                |                |                  |        |
| Lane 1 <sup>d</sup> | 122                                | 0.0    | 122                | 0.0 | 1027  | 0.119        | 100           | 6.1            | LOS A               | 0.7                   | 4.8  | Full           | 420            | 0.0              | 0.0    |

| Approach        | 122  | 0.0 | 122  | 0.0 | 0.119 | 6.1 | LOS A | 0.7 | 4.8  |
|-----------------|------|-----|------|-----|-------|-----|-------|-----|------|
| All<br>Vehicles | 1004 | 3.9 | 1004 | 3.9 | 0.288 | 3.2 | LOS A | 1.5 | 10.7 |

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

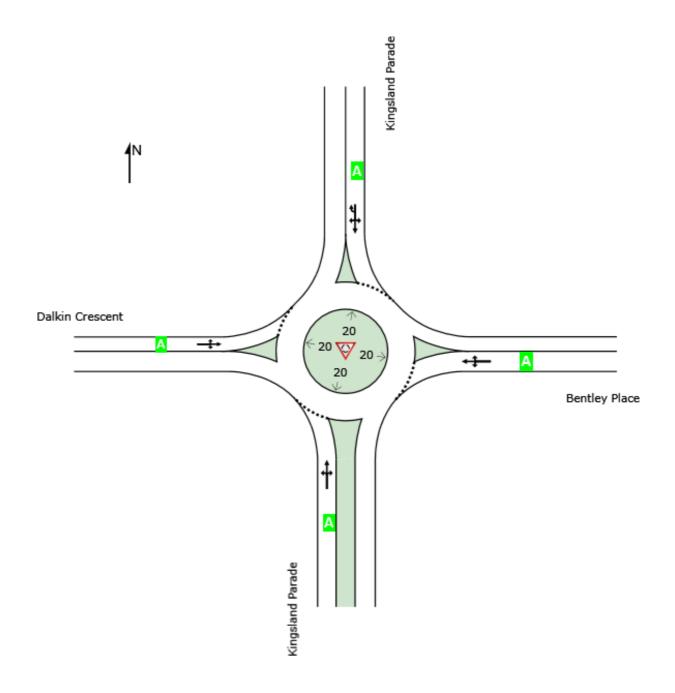
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.


d Dominant lane on roundabout approach

## V Site: 101B [PM Future 2034 Weekday Peak 5:15pm - 6:15pm (Site Folder: Future)]

New Site Site Category: (None) Roundabout

#### LOS Summary

| Γ |     |       | Appro | aches |      | Intersection |
|---|-----|-------|-------|-------|------|--------------|
|   |     | South | East  | North | West | Intersection |
| ſ | LOS | А     | А     | А     | А    | А            |



Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

| Vehi | cle Movemen | t Performanc              | e                   |      |       |          |                |              |       |      |                  |       |
|------|-------------|---------------------------|---------------------|------|-------|----------|----------------|--------------|-------|------|------------------|-------|
| Mov  | Turn Mov    | Demand                    | Arrival             |      |       | Level of | 95% Ba         |              | Prop. | Eff. | Aver.            | Aver. |
| ID   | Class       | Flows<br>[ Total HV ] [ ] | Flows<br>[otal HV ] | Satn | Delay | Service  | Quei<br>[ Veh. | ue<br>Dist ] | Que   |      | No. of<br>Cycles | Speed |

|        |          |            | veh/h | %    | veh/h | %    | v/c   | sec  |       | veh | m    |      |      |      | km/h |
|--------|----------|------------|-------|------|-------|------|-------|------|-------|-----|------|------|------|------|------|
| South  | n: King  | sland Para | ade   |      |       |      |       |      |       |     |      |      |      |      |      |
| 1      | L2       | All MCs    | 69    | 0.0  | 69    | 0.0  | 0.555 | 2.7  | LOS A | 4.5 | 31.8 | 0.47 | 0.39 | 0.47 | 36.2 |
| 2      | T1       | All MCs    | 485   | 1.7  | 485   | 1.7  | 0.555 | 2.2  | LOS A | 4.5 | 31.8 | 0.47 | 0.39 | 0.47 | 35.5 |
| 3      | R2       | All MCs    | 164   | 1.3  | 164   | 1.3  | 0.555 | 6.5  | LOS A | 4.5 | 31.8 | 0.47 | 0.39 | 0.47 | 30.6 |
| Appro  | bach     |            | 719   | 1.5  | 719   | 1.5  | 0.555 | 3.2  | LOS A | 4.5 | 31.8 | 0.47 | 0.39 | 0.47 | 34.9 |
| East:  | Bentle   | ey Place   |       |      |       |      |       |      |       |     |      |      |      |      |      |
| 4      | L2       | All MCs    | 212   | 1.0  | 212   | 1.0  | 0.296 | 3.4  | LOS A | 1.6 | 11.4 | 0.51 | 0.51 | 0.51 | 30.8 |
| 5      | T1       | All MCs    | 39    | 0.0  | 39    | 0.0  | 0.296 | 2.8  | LOS A | 1.6 | 11.4 | 0.51 | 0.51 | 0.51 | 36.6 |
| 6      | R2       | All MCs    | 60    | 3.5  | 60    | 3.5  | 0.296 | 7.2  | LOS A | 1.6 | 11.4 | 0.51 | 0.51 | 0.51 | 35.0 |
| Appro  | bach     |            | 311   | 1.4  | 311   | 1.4  | 0.296 | 4.1  | LOS A | 1.6 | 11.4 | 0.51 | 0.51 | 0.51 | 33.3 |
| North  | : Kings  | sland Para | ide   |      |       |      |       |      |       |     |      |      |      |      |      |
| 7      | L2       | All MCs    | 21    | 0.0  | 21    | 0.0  | 0.290 | 2.8  | LOS A | 1.6 | 11.8 | 0.42 | 0.38 | 0.42 | 35.9 |
| 8      | T1       | All MCs    | 266   | 3.2  | 266   | 3.2  | 0.290 | 2.3  | LOS A | 1.6 | 11.8 | 0.42 | 0.38 | 0.42 | 35.9 |
| 9      | R2       | All MCs    | 29    | 0.0  | 29    | 0.0  | 0.290 | 6.6  | LOS A | 1.6 | 11.8 | 0.42 | 0.38 | 0.42 | 37.3 |
| 9u     | U        | All MCs    | 11    | 50.0 | 11 :  | 50.0 | 0.290 | 8.9  | LOS A | 1.6 | 11.8 | 0.42 | 0.38 | 0.42 | 36.7 |
| Appro  | bach     |            | 327   | 4.2  | 327   | 4.2  | 0.290 | 2.9  | LOS A | 1.6 | 11.8 | 0.42 | 0.38 | 0.42 | 36.2 |
| West   | : Dalkii | n Crescen  | t     |      |       |      |       |      |       |     |      |      |      |      |      |
| 10     | L2       | All MCs    | 46    | 0.0  | 46    | 0.0  | 0.144 | 7.0  | LOS A | 0.9 | 6.5  | 0.78 | 0.69 | 0.78 | 35.4 |
| 11     | T1       | All MCs    | 13    | 0.0  | 13    | 0.0  | 0.144 | 6.5  | LOS A | 0.9 | 6.5  | 0.78 | 0.69 | 0.78 | 34.1 |
| 12     | R2       | All MCs    | 37    | 0.0  | 37    | 0.0  | 0.144 | 10.8 | LOS A | 0.9 | 6.5  | 0.78 | 0.69 | 0.78 | 33.5 |
| Appro  | bach     |            | 96    | 0.0  | 96    | 0.0  | 0.144 | 8.4  | LOS A | 0.9 | 6.5  | 0.78 | 0.69 | 0.78 | 34.6 |
| All Ve | hicles   |            | 1453  | 2.0  | 1453  | 2.0  | 0.555 | 3.7  | LOS A | 4.5 | 31.8 | 0.49 | 0.43 | 0.49 | 34.9 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Lane Use              | e and P                            | Perfor | mance   | 9     |       |              |               |                |                     |                        |      |                |                |                  |     |
|-----------------------|------------------------------------|--------|---------|-------|-------|--------------|---------------|----------------|---------------------|------------------------|------|----------------|----------------|------------------|-----|
|                       | Dem<br>Flo <sup>r</sup><br>[ Total | WS     | Arrival | Flows | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% Ba<br>Que<br>[ Veh |      | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. B |     |
|                       | veh/h                              | %      | veh/h   | %     | veh/h | v/c          | %             | sec            |                     |                        | m    |                | m              | %                | %   |
| South: Kin            | igsland                            | Parade | 9       |       |       |              |               |                |                     |                        |      |                |                |                  |     |
| Lane 1 <sup>d</sup>   | 719                                | 1.5    | 719     | 1.5   | 1296  | 0.555        | 100           | 3.2            | LOS A               | 4.5                    | 31.8 | Full           | 70             | 0.0              | 0.0 |
| Approach              | 719                                | 1.5    | 719     | 1.5   |       | 0.555        |               | 3.2            | LOS A               | 4.5                    | 31.8 |                |                |                  |     |
| East: Bent            | tley Plac                          | e      |         |       |       |              |               |                |                     |                        |      |                |                |                  |     |
| Lane 1 <sup>d</sup>   | 311                                | 1.4    | 311     | 1.4   | 1050  | 0.296        | 100           | 4.1            | LOS A               | 1.6                    | 11.4 | Full           | 95             | 0.0              | 0.0 |
| Approach              | 311                                | 1.4    | 311     | 1.4   |       | 0.296        |               | 4.1            | LOS A               | 1.6                    | 11.4 |                |                |                  |     |
| North: Kin            | gsland F                           | Parade | •       |       |       |              |               |                |                     |                        |      |                |                |                  |     |
| Lane 1 <sup>d</sup>   | 327                                | 4.2    | 327     | 4.2   | 1129  | 0.290        | 100           | 2.9            | LOS A               | 1.6                    | 11.8 | Full           | 300            | 0.0              | 0.0 |
| Approach              | 327                                | 4.2    | 327     | 4.2   |       | 0.290        |               | 2.9            | LOS A               | 1.6                    | 11.8 |                |                |                  |     |
| West: Dalkin Crescent |                                    |        |         |       |       |              |               |                |                     |                        |      |                |                |                  |     |
| Lane 1 <sup>d</sup>   | 96                                 | 0.0    | 96      | 0.0   | 664   | 0.144        | 100           | 8.4            | LOS A               | 0.9                    | 6.5  | Full           | 420            | 0.0              | 0.0 |

| Approach        | 96   | 0.0 | 96   | 0.0 | 0.144 | 8.4 | LOS A | 0.9 | 6.5  |  |
|-----------------|------|-----|------|-----|-------|-----|-------|-----|------|--|
| All<br>Vehicles | 1453 | 2.0 | 1453 | 2.0 | 0.555 | 3.7 | LOS A | 4.5 | 31.8 |  |

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

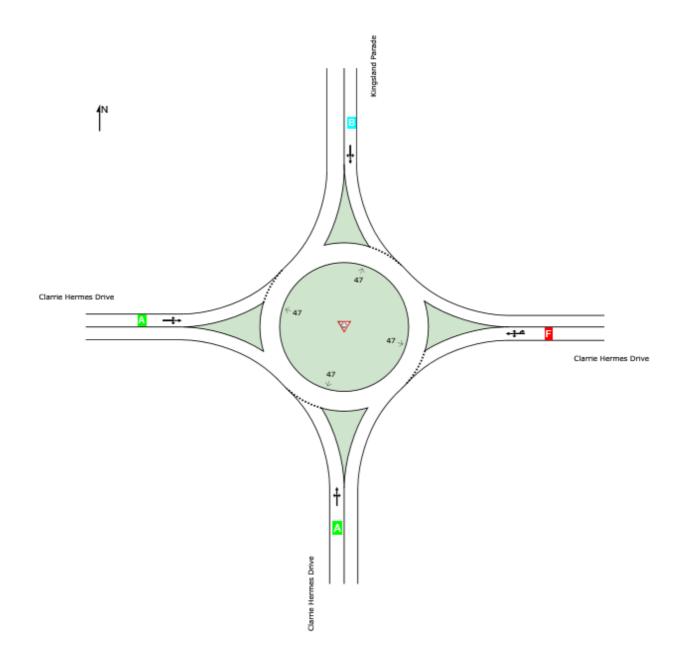
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.


d Dominant lane on roundabout approach

#### ₩ Site: 101C [AM Future 2034 Weekday Peak 8:00am - 9:00am (Site Folder: Future)]

NA Site Category: (None) Roundabout

#### LOS Summary

| ſ |     |       | Appro | aches |      | Intersection |
|---|-----|-------|-------|-------|------|--------------|
|   |     | South | East  | North | West | Intersection |
|   | LOS | А     | F     | В     | А    | F            |



Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

| Vehi | cle Movemer | t Performanc     | e          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |        |       |
|------|-------------|------------------|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------|------|--------|-------|
| Mov  | Turn Mov    | Demand           | Arrival    | Deg. | Aver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level of | 95% Back O | f Prop. | Eff. | Aver.  | Aver. |
| ID   | Class       | Flows            | Flows      | Satn | Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Service  | Queue      | Que     | Stop | No. of | Speed |
|      |             | [ Total HV ] [ ] | Fotal HV ] |      | , in the second s |          | [Veh. Dis  | i]      | Rate | Cycles |       |

|        |          |            | veh/h | %    | veh/h | %    | v/c   | sec   |       | veh   | m      |      |      |      | km/h   |
|--------|----------|------------|-------|------|-------|------|-------|-------|-------|-------|--------|------|------|------|--------|
| South  | n: Cları | rie Herme  |       |      | VCH/H | 70   | 0/0   | 300   |       | VCII  |        | _    |      |      | N11/11 |
| 1      | L2       | All MCs    | 8     | 0.0  | 8     | 0.0  | 0.072 | 5.3   | LOS A | 0.4   | 3.1    | 0.82 | 0.70 | 0.82 | 39.5   |
| 2      | T1       | All MCs    | 6     | 0.0  | 6     | 0.0  | 0.072 | 4.1   | LOS A | 0.4   | 3.1    | 0.82 | 0.70 | 0.82 | 33.5   |
| 3      | R2       | All MCs    | 32    | 0.0  | 32    | 0.0  | 0.072 | 11.1  | LOS A | 0.4   | 3.1    | 0.82 | 0.70 | 0.82 | 39.2   |
| Appro  | oach     |            | 46    | 0.0  | 46    | 0.0  | 0.072 | 9.1   | LOS A | 0.4   | 3.1    | 0.82 | 0.70 | 0.82 | 38.7   |
| East:  | Clarrie  | e Hermes   | Drive |      |       |      |       |       |       |       |        |      |      |      |        |
| 4      | L2       | All MCs    | 42    | 0.0  | 42    | 0.0  | 1.323 | 303.9 | LOS F | 161.9 | 1189.8 | 1.00 | 4.02 | 8.73 | 5.5    |
| 5      | T1       | All MCs    | 847   | 5.5  | 847   | 5.5  | 1.323 | 304.2 | LOS F | 161.9 | 1189.8 | 1.00 | 4.02 | 8.73 | 7.4    |
| 6      | R2       | All MCs    | 45    | 18.6 | 45    | 18.6 | 1.323 | 312.9 | LOS F | 161.9 | 1189.8 | 1.00 | 4.02 | 8.73 | 4.9    |
| 6u     | U        | All MCs    | 8     | 0.0  | 8     | 0.0  | 1.323 | 314.9 | LOS F | 161.9 | 1189.8 | 1.00 | 4.02 | 8.73 | 7.5    |
| Appro  | oach     |            | 943   | 5.8  | 943   | 5.8  | 1.323 | 304.7 | LOS F | 161.9 | 1189.8 | 1.00 | 4.02 | 8.73 | 7.2    |
| North  | : King   | sland Para | ade   |      |       |      |       |       |       |       |        |      |      |      |        |
| 7      | L2       | All MCs    | 329   | 4.2  | 329   | 4.2  | 0.824 | 20.3  | LOS B | 11.9  | 85.6   | 1.00 | 1.35 | 1.91 | 25.8   |
| 8      | T1       | All MCs    | 4     | 0.0  | 4     | 0.0  | 0.824 | 19.9  | LOS B | 11.9  | 85.6   | 1.00 | 1.35 | 1.91 | 19.5   |
| 9      | R2       | All MCs    | 189   | 2.8  | 189   | 2.8  | 0.824 | 24.7  | LOS B | 11.9  | 85.6   | 1.00 | 1.35 | 1.91 | 25.3   |
| Appro  | oach     |            | 523   | 3.6  | 523   | 3.6  | 0.824 | 21.9  | LOS B | 11.9  | 85.6   | 1.00 | 1.35 | 1.91 | 25.6   |
| West   | : Clarri | e Hermes   | Drive |      |       |      |       |       |       |       |        |      |      |      |        |
| 10     | L2       | All MCs    | 144   | 2.9  | 144   | 2.9  | 0.539 | 5.3   | LOS A | 4.5   | 33.0   | 0.33 | 0.42 | 0.33 | 41.7   |
| 11     | T1       | All MCs    | 707   | 6.4  | 707   | 6.4  | 0.539 | 5.2   | LOS A | 4.5   | 33.0   | 0.33 | 0.42 | 0.33 | 61.6   |
| 12     | R2       | All MCs    | 12    | 0.0  | 12    | 0.0  | 0.539 | 13.0  | LOS A | 4.5   | 33.0   | 0.33 | 0.42 | 0.33 | 54.4   |
| Appro  | oach     |            | 863   | 5.7  | 863   | 5.7  | 0.539 | 5.3   | LOS A | 4.5   | 33.0   | 0.33 | 0.42 | 0.33 | 58.3   |
| All Ve | ehicles  |            | 2376  | 5.2  | 2376  | 5.2  | 1.323 | 127.9 | LOS F | 161.9 | 1189.8 | 0.75 | 2.06 | 4.02 | 13.4   |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Lane Use                   | e and P                          | erfor   | mance   |       |       |              |               |                |                     |                       |        |                |                |                  |                             |
|----------------------------|----------------------------------|---------|---------|-------|-------|--------------|---------------|----------------|---------------------|-----------------------|--------|----------------|----------------|------------------|-----------------------------|
|                            | Dem<br>Flo <sup>r</sup><br>Total | ws      | Arrival | Flows | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% B<br>Que<br>[ Veh |        | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. E | <sup>D</sup> rob.<br>Block. |
|                            | veh/h                            | %       | veh/h   | %     | veh/h | v/c          | %             | sec            |                     | [ •011                | m      |                | m              | %                | %                           |
| South: Cla                 | arrie Her                        | mes D   | rive    |       |       |              |               |                |                     |                       |        |                |                |                  |                             |
| Lane 1 <sup>d</sup>        | 46                               | 0.0     | 46      | 0.0   | 645   | 0.072        | 100           | 9.1            | LOS A               | 0.4                   | 3.1    | Full           | 115            | -11.0            | 0.0                         |
| Approach                   | 46                               | 0.0     | 46      | 0.0   |       | 0.072        |               | 9.1            | LOS A               | 0.4                   | 3.1    |                |                |                  |                             |
| East: Clar                 | rie Herm                         | nes Dri | ve      |       |       |              |               |                |                     |                       |        |                |                |                  |                             |
| Lane 1 <sup>d</sup>        | 943                              | 5.8     | 943     | 5.8   | 713   | 1.323        | 100           | 304.7          | LOS F               | 161.9                 | 1189.8 | Full           | 325            | 0.0              | <mark>100.0</mark>          |
| Approach                   | 943                              | 5.8     | 943     | 5.8   |       | 1.323        |               | 304.7          | LOS F               | 161.9                 | 1189.8 |                |                |                  |                             |
| North: Kin                 | gsland F                         | Parade  |         |       |       |              |               |                |                     |                       |        |                |                |                  |                             |
| Lane 1 <sup>d</sup>        | 523                              | 3.6     | 523     | 3.6   | 635   | 0.824        | 100           | 21.9           | LOS B               | 11.9                  | 85.6   | Full           | 65             | 0.0              | <mark>13.8</mark>           |
| Approach                   | 523                              | 3.6     | 523     | 3.6   |       | 0.824        |               | 21.9           | LOS B               | 11.9                  | 85.6   |                |                |                  |                             |
| West: Clarrie Hermes Drive |                                  |         |         |       |       |              |               |                |                     |                       |        |                |                |                  |                             |
| Lane 1 <sup>d</sup>        | 863                              | 5.7     | 863     | 5.7   | 1601  | 0.539        | 100           | 5.3            | LOS A               | 4.5                   | 33.0   | Full           | 310            | 0.0              | 0.0                         |

| Approach        | 863  | 5.7 | 863  | 5.7 | 0.539 | 5.3   | LOS A | 4.5   | 33.0   |  |
|-----------------|------|-----|------|-----|-------|-------|-------|-------|--------|--|
| All<br>Vehicles | 2376 | 5.2 | 2376 | 5.2 | 1.323 | 127.9 | LOS F | 161.9 | 1189.8 |  |

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

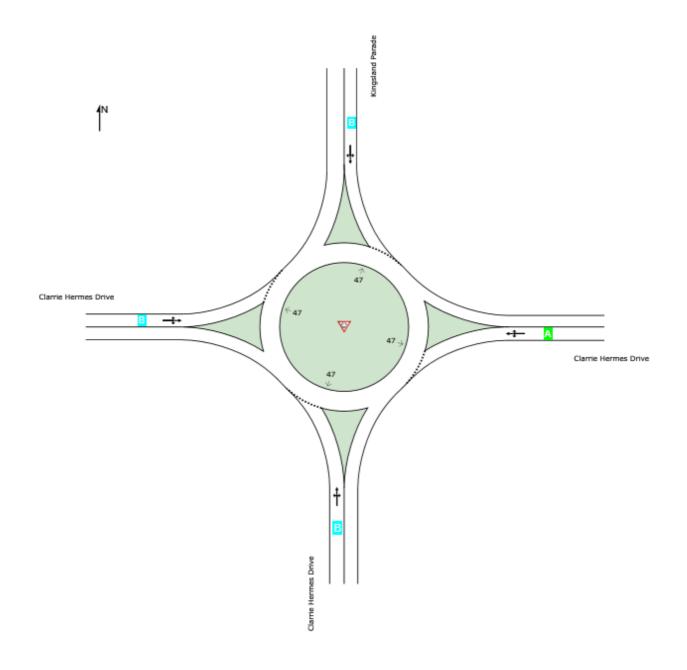
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.


d Dominant lane on roundabout approach

#### V Site: 101D [PM Future 2034 Weekday Peak 5:15pm - 6:15pm (Site Folder: Future)]

NA Site Category: (None) Roundabout

#### LOS Summary

|     |       | Appro | aches |      | Intersection |
|-----|-------|-------|-------|------|--------------|
|     | South | East  | North | West | Intersection |
| LOS | В     | А     | В     | В    | В            |



Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

| Vehi | cle Movemer | t Performanc     | e          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |            |         |      |        |       |
|------|-------------|------------------|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------|------|--------|-------|
| Mov  | Turn Mov    | Demand           | Arrival    | Deg. | Aver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level of | 95% Back O | f Prop. | Eff. | Aver.  | Aver. |
| ID   | Class       | Flows            | Flows      | Satn | Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Service  | Queue      | Que     | Stop | No. of | Speed |
|      |             | [ Total HV ] [ ] | Fotal HV ] |      | , in the second s |          | [Veh. Dis  | i]      | Rate | Cycles |       |

|        |         |            | veh/h   | %   | veh/h | %   | v/c   | sec  |       | veh  | m     |      |      |      | km/h |
|--------|---------|------------|---------|-----|-------|-----|-------|------|-------|------|-------|------|------|------|------|
| South  | : Clarr | ie Herme   | s Drive |     |       |     |       |      |       |      |       |      |      |      |      |
| 1      | L2      | All MCs    | 2       | 0.0 | 2     | 0.0 | 0.093 | 17.4 | LOS B | 0.8  | 5.5   | 1.00 | 0.86 | 1.00 | 32.5 |
| 2      | T1      | All MCs    | 15      | 0.0 | 15    | 0.0 | 0.093 | 16.2 | LOS B | 0.8  | 5.5   | 1.00 | 0.86 | 1.00 | 24.7 |
| 3      | R2      | All MCs    | 12      | 0.0 | 12    | 0.0 | 0.093 | 23.2 | LOS B | 0.8  | 5.5   | 1.00 | 0.86 | 1.00 | 32.4 |
| Appro  | bach    |            | 28      | 0.0 | 28    | 0.0 | 0.093 | 19.1 | LOS B | 0.8  | 5.5   | 1.00 | 0.86 | 1.00 | 29.2 |
| East:  | Clarrie | e Hermes   | Drive   |     |       |     |       |      |       |      |       |      |      |      |      |
| 4      | L2      | All MCs    | 59      | 0.0 | 59    | 0.0 | 0.884 | 10.9 | LOS A | 17.6 | 124.0 | 0.98 | 0.86 | 1.25 | 47.5 |
| 5      | T1      | All MCs    | 798     | 0.8 | 798   | 0.8 | 0.884 | 10.9 | LOS A | 17.6 | 124.0 | 0.98 | 0.86 | 1.25 | 54.2 |
| 6      | R2      | All MCs    | 327     | 1.3 | 327   | 1.3 | 0.884 | 18.7 | LOS B | 17.6 | 124.0 | 0.98 | 0.86 | 1.25 | 45.0 |
| Appro  | bach    |            | 1184    | 0.9 | 1184  | 0.9 | 0.884 | 13.1 | LOS A | 17.6 | 124.0 | 0.98 | 0.86 | 1.25 | 51.8 |
| North  | : Kings | sland Para | ade     |     |       |     |       |      |       |      |       |      |      |      |      |
| 7      | L2      | All MCs    | 252     | 0.0 | 252   | 0.0 | 0.863 | 25.0 | LOS B | 15.4 | 110.2 | 1.00 | 1.48 | 1.96 | 24.0 |
| 8      | T1      | All MCs    | 8       | 0.0 | 8     | 0.0 | 0.863 | 24.8 | LOS B | 15.4 | 110.2 | 1.00 | 1.48 | 1.96 | 17.8 |
| 9      | R2      | All MCs    | 277     | 4.6 | 277   | 4.6 | 0.863 | 29.6 | LOS C | 15.4 | 110.2 | 1.00 | 1.48 | 1.96 | 23.5 |
| Appro  | bach    |            | 537     | 2.4 | 537   | 2.4 | 0.863 | 27.4 | LOS B | 15.4 | 110.2 | 1.00 | 1.48 | 1.96 | 23.7 |
| West:  | Clarri  | e Hermes   | Drive   |     |       |     |       |      |       |      |       |      |      |      |      |
| 10     | L2      | All MCs    | 367     | 0.9 | 367   | 0.9 | 0.970 | 22.4 | LOS B | 33.6 | 239.1 | 1.00 | 1.31 | 1.94 | 29.3 |
| 11     | T1      | All MCs    | 842     | 2.3 | 842   | 2.3 | 0.970 | 22.4 | LOS B | 33.6 | 239.1 | 1.00 | 1.31 | 1.94 | 44.7 |
| 12     | R2      | All MCs    | 23      | 0.0 | 23    | 0.0 | 0.970 | 30.1 | LOS C | 33.6 | 239.1 | 1.00 | 1.31 | 1.94 | 36.3 |
| Appro  | bach    |            | 1233    | 1.8 | 1233  | 1.8 | 0.970 | 22.5 | LOS B | 33.6 | 239.1 | 1.00 | 1.31 | 1.94 | 40.1 |
| All Ve | hicles  |            | 2982    | 1.5 | 2982  | 1.5 | 0.970 | 19.6 | LOS B | 33.6 | 239.1 | 0.99 | 1.16 | 1.66 | 40.1 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Lane Use            | e and P          | erfor     | mance            |           |       |              |               |                |                     |      |                |                |                |                  |                   |
|---------------------|------------------|-----------|------------------|-----------|-------|--------------|---------------|----------------|---------------------|------|----------------|----------------|----------------|------------------|-------------------|
|                     | Dem<br>Flo       | WS        | Arrival          |           | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | Qu   | lack Of<br>eue | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. E |                   |
|                     | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | veh/h | v/c          | %             | sec            |                     | [Veh | Dist ]<br>m    |                | m              | %                | %                 |
| South: Cla          | arrie Her        | mes D     | rive             |           |       |              |               |                |                     |      |                |                |                |                  |                   |
| Lane 1 <sup>d</sup> | 28               | 0.0       | 28               | 0.0       | 306   | 0.093        | 100           | 19.1           | LOS B               | 0.8  | 5.5            | Full           | 115            | 0.0              | 0.0               |
| Approach            | 28               | 0.0       | 28               | 0.0       |       | 0.093        |               | 19.1           | LOS B               | 0.8  | 5.5            |                |                |                  |                   |
| East: Clar          | rie Hern         | nes Dri   | ve               |           |       |              |               |                |                     |      |                |                |                |                  |                   |
| Lane 1 <sup>d</sup> | 1184             | 0.9       | 1184             | 0.9       | 1340  | 0.884        | 100           | 13.1           | LOS A               | 17.6 | 124.0          | Full           | 325            | 0.0              | 0.0               |
| Approach            | 1184             | 0.9       | 1184             | 0.9       |       | 0.884        |               | 13.1           | LOS A               | 17.6 | 124.0          |                |                |                  |                   |
| North: Kin          | gsland F         | Parade    | ;                |           |       |              |               |                |                     |      |                |                |                |                  |                   |
| Lane 1 <sup>d</sup> | 537              | 2.4       | 537              | 2.4       | 622   | 0.863        | 100           | 27.4           | LOS B               | 15.4 | 110.2          | Full           | 65             | 0.0              | <mark>23.8</mark> |
| Approach            | 537              | 2.4       | 537              | 2.4       |       | 0.863        |               | 27.4           | LOS B               | 15.4 | 110.2          |                |                |                  |                   |
| West: Clar          | rrie Herr        | nes Dr    | rive             |           |       |              |               |                |                     |      |                |                |                |                  |                   |
| Lane 1 <sup>d</sup> | 1233             | 1.8       | 1233             | 1.8       | 1271  | 0.970        | 100           | 22.5           | LOS B               | 33.6 | 239.1          | Full           | 310            | 0.0              | 0.0               |
| Approach            | 1233             | 1.8       | 1233             | 1.8       |       | 0.970        |               | 22.5           | LOS B               | 33.6 | 239.1          |                |                |                  |                   |

| All      | 2982 | 1.5 | 2982 | 1.5 | 0.970 | 19.6 | LOS B | 33.6 | 239.1 |
|----------|------|-----|------|-----|-------|------|-------|------|-------|
| Vehicles |      |     |      |     |       |      |       |      |       |

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

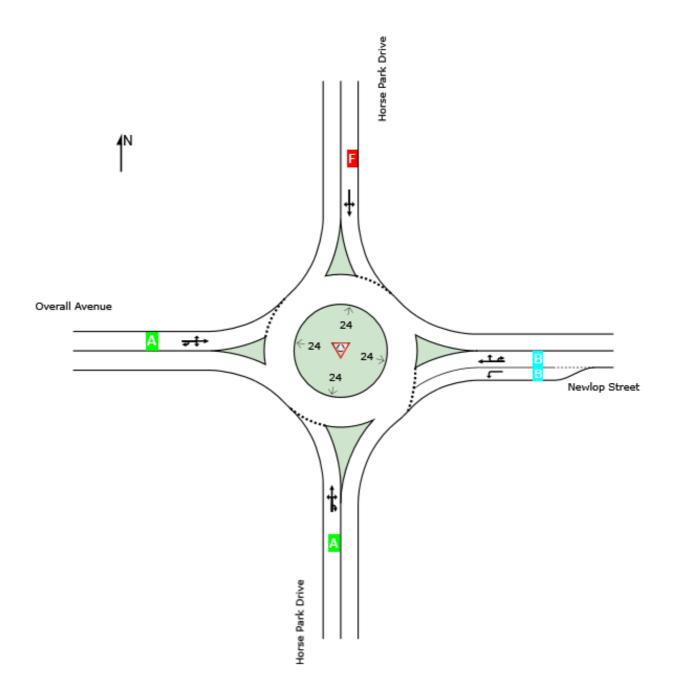
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.


d Dominant lane on roundabout approach

## V Site: 101E [AM Future 2034 Weekday Peak 8:00am - 9:00am (Site Folder: Future)]

New Site Site Category: (None) Roundabout

#### LOS Summary

|     |       | Appro | aches        |   | Intersection |
|-----|-------|-------|--------------|---|--------------|
|     | South | West  | Intersection |   |              |
| LOS | А     | В     | F            | А | F            |



Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

| Vehi | cle Movemen | t Performanc     | e:          |      |       |          |                    |     |      |        |       |
|------|-------------|------------------|-------------|------|-------|----------|--------------------|-----|------|--------|-------|
| Mov  | Turn Mov    | Demand           | Arrival     |      |       | Level of | 95% Back (         |     | Eff. | Aver.  | Aver. |
| ID   | Class       | Flows            | Flows       | Satn | Delay | Service  | Queue<br>[ Veh. Di | Que |      | No. of | Speed |
|      |             | [ Total HV ] [ ] | iotar fiv j |      |       |          | [ven. Di           | sij | Rate | Cycles |       |

|        |        |            | veh/h | %   | veh/h | %   | v/c   | sec   |       | veh   | m      |      |      |       | km/h |
|--------|--------|------------|-------|-----|-------|-----|-------|-------|-------|-------|--------|------|------|-------|------|
| South  | : Hors | e Park Dr  | ive   |     |       |     |       |       |       |       |        |      |      |       |      |
| 1      | L2     | All MCs    | 99    | 2.1 | 99    | 2.1 | 0.780 | 13.6  | LOS A | 10.5  | 76.4   | 0.94 | 0.87 | 1.27  | 35.3 |
| 2      | T1     | All MCs    | 554   | 4.8 | 554   | 4.8 | 0.780 | 14.2  | LOS A | 10.5  | 76.4   | 0.94 | 0.87 | 1.27  | 56.8 |
| 3      | R2     | All MCs    | 51    | 0.0 | 51    | 0.0 | 0.780 | 19.1  | LOS B | 10.5  | 76.4   | 0.94 | 0.87 | 1.27  | 38.7 |
| 3u     | U      | All MCs    | 2     | 0.0 | 2     | 0.0 | 0.780 | 21.6  | LOS B | 10.5  | 76.4   | 0.94 | 0.87 | 1.27  | 55.8 |
| Appro  | ach    |            | 705   | 4.0 | 705   | 4.0 | 0.780 | 14.5  | LOS A | 10.5  | 76.4   | 0.94 | 0.87 | 1.27  | 52.6 |
| East:  | Newlo  | p Street   |       |     |       |     |       |       |       |       |        |      |      |       |      |
| 4      | L2     | All MCs    | 92    | 3.4 | 92    | 3.4 | 0.391 | 24.9  | LOS B | 3.1   | 22.5   | 1.00 | 0.95 | 1.10  | 31.9 |
| 5      | T1     | All MCs    | 136   | 1.6 | 136   | 1.6 | 0.447 | 21.6  | LOS B | 4.5   | 31.7   | 1.00 | 0.97 | 1.13  | 24.7 |
| 6      | R2     | All MCs    | 15    | 0.0 | 15    | 0.0 | 0.447 | 26.5  | LOS B | 4.5   | 31.7   | 1.00 | 0.97 | 1.13  | 34.2 |
| 6u     | U      | All MCs    | 2     | 0.0 | 2     | 0.0 | 0.447 | 30.2  | LOS C | 4.5   | 31.7   | 1.00 | 0.97 | 1.13  | 27.5 |
| Appro  | ach    |            | 244   | 2.2 | 244   | 2.2 | 0.447 | 23.2  | LOS B | 4.5   | 31.7   | 1.00 | 0.96 | 1.12  | 28.9 |
| North  | Horse  | e Park Dri | ve    |     |       |     |       |       |       |       |        |      |      |       |      |
| 7      | L2     | All MCs    | 12    | 0.0 | 12    | 0.0 | 1.251 | 239.4 | LOS F | 184.1 | 1324.6 | 1.00 | 4.71 | 10.58 | 9.3  |
| 8      | T1     | All MCs    | 962   | 3.3 | 962   | 3.3 | 1.251 | 240.1 | LOS F | 184.1 | 1324.6 | 1.00 | 4.71 | 10.58 | 12.3 |
| 9      | R2     | All MCs    | 348   | 3.3 | 348   | 3.3 | 1.251 | 245.2 | LOS F | 184.1 | 1324.6 | 1.00 | 4.71 | 10.58 | 8.4  |
| Appro  | ach    |            | 1322  | 3.3 | 1322  | 3.3 | 1.251 | 241.4 | LOS F | 184.1 | 1324.6 | 1.00 | 4.71 | 10.58 | 11.3 |
| West:  | Overa  | all Avenue |       |     |       |     |       |       |       |       |        |      |      |       |      |
| 10     | L2     | All MCs    | 167   | 4.4 | 167   | 4.4 | 0.574 | 7.7   | LOS A | 5.2   | 37.5   | 0.88 | 0.81 | 1.01  | 40.3 |
| 11     | T1     | All MCs    | 59    | 7.1 | 59    | 7.1 | 0.574 | 7.5   | LOS A | 5.2   | 37.5   | 0.88 | 0.81 | 1.01  | 33.8 |
| 12     | R2     | All MCs    | 249   | 1.3 | 249   | 1.3 | 0.574 | 12.2  | LOS A | 5.2   | 37.5   | 0.88 | 0.81 | 1.01  | 39.2 |
| 12u    | U      | All MCs    | 2     | 0.0 | 2     | 0.0 | 0.574 | 14.1  | LOS A | 5.2   | 37.5   | 0.88 | 0.81 | 1.01  | 15.5 |
| Appro  | ach    |            | 478   | 3.1 | 478   | 3.1 | 0.574 | 10.1  | LOS A | 5.2   | 37.5   | 0.88 | 0.81 | 1.01  | 39.1 |
| All Ve | hicles |            | 2749  | 3.3 | 2749  | 3.3 | 1.251 | 123.6 | LOS F | 184.1 | 1324.6 | 0.96 | 2.71 | 5.69  | 17.3 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Lane Use            | e and P          | erfor     | mance            |           |       |              |               |                |                     |       |             |                |                |                  |                   |
|---------------------|------------------|-----------|------------------|-----------|-------|--------------|---------------|----------------|---------------------|-------|-------------|----------------|----------------|------------------|-------------------|
|                     | Dem<br>Flo       | WS        | Arrival          |           | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | Que   |             | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. E | Prob.<br>Block.   |
|                     | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | veh/h | v/c          | %             | sec            |                     | [Veh  | Dist ]<br>m |                | m              | %                | %                 |
| South: Ho           | rse Park         | c Drive   |                  |           |       |              |               |                |                     |       |             |                |                |                  |                   |
| Lane 1 <sup>d</sup> | 705              | 4.0       | 705              | 4.0       | 904   | 0.780        | 100           | 14.5           | LOS A               | 10.5  | 76.4        | Full           | 450            | 0.0              | 0.0               |
| Approach            | 705              | 4.0       | 705              | 4.0       |       | 0.780        |               | 14.5           | LOS A               | 10.5  | 76.4        |                |                |                  |                   |
| East: New           | lop Stre         | et        |                  |           |       |              |               |                |                     |       |             |                |                |                  |                   |
| Lane 1              | 92               | 3.4       | 92               | 3.4       | 234   | 0.391        | 100           | 24.9           | LOS B               | 3.1   | 22.5        | Short          | 36             | 0.0              | NA                |
| Lane 2 <sup>d</sup> | 153              | 1.4       | 153              | 1.4       | 341   | 0.447        | 100           | 22.2           | LOS B               | 4.5   | 31.7        | Full           | 170            | 0.0              | 0.0               |
| Approach            | 244              | 2.2       | 244              | 2.2       |       | 0.447        |               | 23.2           | LOS B               | 4.5   | 31.7        |                |                |                  |                   |
| North: Hor          | se Park          | Drive     |                  |           |       |              |               |                |                     |       |             |                |                |                  |                   |
| Lane 1 <sup>d</sup> | 1322             | 3.3       | 1322             | 3.3       | 1057  | 1.251        | 100           | 241.4          | LOS F               | 184.1 | 1324.6      | Full           | 500            | 0.0              | <mark>59.0</mark> |

| Approach            | 1322      | 3.3 | 1322 | 3.3 |     | 1.251 |     | 241.4 | LOS F | 184.1 | 1324.6 |      |     |     |     |
|---------------------|-----------|-----|------|-----|-----|-------|-----|-------|-------|-------|--------|------|-----|-----|-----|
| West: Ove           | erall Ave | nue |      |     |     |       |     |       |       |       |        |      |     |     |     |
| Lane 1 <sup>d</sup> | 478       | 3.1 | 478  | 3.1 | 832 | 0.574 | 100 | 10.1  | LOS A | 5.2   | 37.5   | Full | 100 | 0.0 | 0.0 |
| Approach            | 478       | 3.1 | 478  | 3.1 |     | 0.574 |     | 10.1  | LOS A | 5.2   | 37.5   |      |     |     |     |
| All<br>Vehicles     | 2749      | 3.3 | 2749 | 3.3 |     | 1.251 |     | 123.6 | LOS F | 184.1 | 1324.6 |      |     |     |     |

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

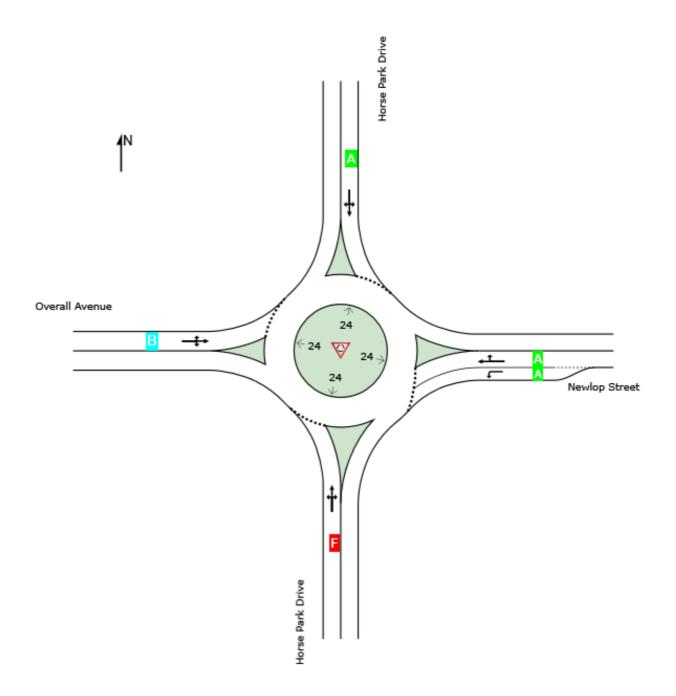
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.


d Dominant lane on roundabout approach

## V Site: 101E [PM Future 2034 Weekday Peak 5:15pm - 6:15pm (Site Folder: Future)]

New Site Site Category: (None) Roundabout

#### LOS Summary

|     |       | Appro | aches |      | Intersection |
|-----|-------|-------|-------|------|--------------|
|     | South | East  | North | West | Intersection |
| LOS | F     | А     | А     | В    | F            |



Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes. Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

| Vehi      | cle Movemen       | t Performanc     | e                |  |                     |                |        |              |      |                 |                |
|-----------|-------------------|------------------|------------------|--|---------------------|----------------|--------|--------------|------|-----------------|----------------|
| Mov<br>ID | Turn Mov<br>Class | Demand<br>Flows  | Arrival<br>Flows |  | Level of<br>Service | 95% Ba<br>Quei | Je     | Prop.<br>Que |      | Aver.<br>No. of | Aver.<br>Speed |
|           |                   | [ Total HV ] [ ] | 「otal HV ]       |  |                     | [Veh.          | Dist ] |              | Rate | Cycles          |                |

|        |        |            | veh/h | %   | veh/h | %   | v/c   | sec   |       | veh   | m      |      |      |       | km/h |
|--------|--------|------------|-------|-----|-------|-----|-------|-------|-------|-------|--------|------|------|-------|------|
| South  | : Hors | e Park Dr  | ive   |     |       |     |       |       |       |       |        |      |      |       |      |
| 1      | L2     | All MCs    | 185   | 1.1 | 185   | 1.1 | 1.259 | 247.7 | LOS F | 178.9 | 1266.7 | 1.00 | 4.76 | 11.20 | 7.2  |
| 2      | T1     | All MCs    | 968   | 1.3 | 968   | 1.3 | 1.259 | 248.3 | LOS F | 178.9 | 1266.7 | 1.00 | 4.76 | 11.20 | 12.0 |
| 3      | R2     | All MCs    | 102   | 2.1 | 102   | 2.1 | 1.259 | 253.4 | LOS F | 178.9 | 1266.7 | 1.00 | 4.76 | 11.20 | 8.4  |
| Appro  | bach   |            | 1256  | 1.3 | 1256  | 1.3 | 1.259 | 248.6 | LOS F | 178.9 | 1266.7 | 1.00 | 4.76 | 11.20 | 11.0 |
| East:  | Newlo  | p Street   |       |     |       |     |       |       |       |       |        |      |      |       |      |
| 4      | L2     | All MCs    | 67    | 0.0 | 67    | 0.0 | 0.138 | 9.9   | LOS A | 1.0   | 6.9    | 0.91 | 0.77 | 0.91  | 40.4 |
| 5      | T1     | All MCs    | 120   | 0.0 | 120   | 0.0 | 0.196 | 8.1   | LOS A | 1.6   | 11.5   | 0.95 | 0.73 | 0.95  | 35.5 |
| 6      | R2     | All MCs    | 12    | 0.0 | 12    | 0.0 | 0.196 | 13.1  | LOS A | 1.6   | 11.5   | 0.95 | 0.73 | 0.95  | 41.7 |
| Appro  | bach   |            | 199   | 0.0 | 199   | 0.0 | 0.196 | 9.0   | LOS A | 1.6   | 11.5   | 0.94 | 0.74 | 0.94  | 38.3 |
| North  | : Hors | e Park Dri | ve    |     |       |     |       |       |       |       |        |      |      |       |      |
| 7      | L2     | All MCs    | 22    | 0.0 | 22    | 0.0 | 0.760 | 10.1  | LOS A | 10.1  | 71.6   | 0.86 | 0.75 | 1.01  | 53.7 |
| 8      | T1     | All MCs    | 553   | 1.3 | 553   | 1.3 | 0.760 | 10.6  | LOS A | 10.1  | 71.6   | 0.86 | 0.75 | 1.01  | 59.5 |
| 9      | R2     | All MCs    | 268   | 2.4 | 268   | 2.4 | 0.760 | 15.8  | LOS B | 10.1  | 71.6   | 0.86 | 0.75 | 1.01  | 50.2 |
| Appro  | bach   |            | 843   | 1.6 | 843   | 1.6 | 0.760 | 12.3  | LOS A | 10.1  | 71.6   | 0.86 | 0.75 | 1.01  | 56.9 |
| West:  | Overa  | all Avenue | 1     |     |       |     |       |       |       |       |        |      |      |       |      |
| 10     | L2     | All MCs    | 249   | 2.5 | 249   | 2.5 | 0.798 | 19.3  | LOS B | 10.8  | 76.8   | 1.00 | 1.18 | 1.62  | 34.1 |
| 11     | T1     | All MCs    | 117   | 1.8 | 117   | 1.8 | 0.798 | 19.0  | LOS B | 10.8  | 76.8   | 1.00 | 1.18 | 1.62  | 25.5 |
| 12     | R2     | All MCs    | 111   | 0.0 | 111   | 0.0 | 0.798 | 23.8  | LOS B | 10.8  | 76.8   | 1.00 | 1.18 | 1.62  | 32.9 |
| Appro  | bach   |            | 477   | 1.8 | 477   | 1.8 | 0.798 | 20.3  | LOS B | 10.8  | 76.8   | 1.00 | 1.18 | 1.62  | 32.3 |
| All Ve | hicles |            | 2775  | 1.4 | 2775  | 1.4 | 1.259 | 120.4 | LOS F | 178.9 | 1266.7 | 0.95 | 2.64 | 5.72  | 17.6 |

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

| Lane Use            | e and P          | erfor     | mance            |           |       |              |               |                |                     |       |               |                |                |                  |                   |
|---------------------|------------------|-----------|------------------|-----------|-------|--------------|---------------|----------------|---------------------|-------|---------------|----------------|----------------|------------------|-------------------|
|                     | Dem<br>Flo       | WS        | Arrival          |           | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | Qu    | ack Of<br>eue | Lane<br>Config | Lane<br>Length | Cap. F<br>Adj. E | Prob.<br>Block.   |
|                     | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV J<br>% | veh/h | v/c          | %             | sec            |                     | [Veh  | Dist]<br>m    |                | m              | %                | %                 |
| South: Ho           | rse Parl         | c Drive   |                  |           |       |              |               |                |                     |       |               |                |                |                  |                   |
| Lane 1 <sup>d</sup> | 1256             | 1.3       | 1256             | 1.3       | 997   | 1.259        | 100           | 248.6          | LOS F               | 178.9 | 1266.7        | Full           | 450            | 0.0              | <mark>73.6</mark> |
| Approach            | 1256             | 1.3       | 1256             | 1.3       |       | 1.259        |               | 248.6          | LOS F               | 178.9 | 1266.7        |                |                |                  |                   |
| East: Newlop Street |                  |           |                  |           |       |              |               |                |                     |       |               |                |                |                  |                   |
| Lane 1              | 67               | 0.0       | 67               | 0.0       | 488   | 0.138        | 100           | 9.9            | LOS A               | 1.0   | 6.9           | Short          | 36             | 0.0              | NA                |
| Lane 2 <sup>d</sup> | 132              | 0.0       | 132              | 0.0       | 671   | 0.196        | 100           | 8.5            | LOS A               | 1.6   | 11.5          | Full           | 170            | 0.0              | 0.0               |
| Approach            | 199              | 0.0       | 199              | 0.0       |       | 0.196        |               | 9.0            | LOS A               | 1.6   | 11.5          |                |                |                  |                   |
| North: Hor          | se Park          | Drive     |                  |           |       |              |               |                |                     |       |               |                |                |                  |                   |
| Lane 1 <sup>d</sup> | 843              | 1.6       | 843              | 1.6       | 1109  | 0.760        | 100           | 12.3           | LOS A               | 10.1  | 71.6          | Full           | 500            | 0.0              | 0.0               |
| Approach            | 843              | 1.6       | 843              | 1.6       |       | 0.760        |               | 12.3           | LOS A               | 10.1  | 71.6          |                |                |                  |                   |
| West: Ove           | erall Ave        | nue       |                  |           |       |              |               |                |                     |       |               |                |                |                  |                   |
| Lane 1 <sup>d</sup> | 477              | 1.8       | 477              | 1.8       | 597   | 0.798        | 100           | 20.3           | LOS B               | 10.8  | 76.8          | Full           | 100            | 0.0              | 0.0               |

| Approach        | 477  | 1.8 | 477  | 1.8 | 0.798 | 20.3  | LOS B | 10.8  | 76.8   |  |
|-----------------|------|-----|------|-----|-------|-------|-------|-------|--------|--|
| All<br>Vehicles | 2775 | 1.4 | 2775 | 1.4 | 1.259 | 120.4 | LOS F | 178.9 | 1266.7 |  |

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: NORTHROP CONSULTING ENGINEERS | Licence: NETWORK / 1PC | Created: Thursday, 2 May 2024 3:15:58 PM Project: J:\YEAR 2022 JOBS\220895-00 Block 9 Section 132 Casey Apartment + Sky Terrace\G - Design Calculations\CIVIL\2024.04.22 ACAT Adjustments\2023 ACAT Revision 1.3 Casey Apartments (02May24).sip9



# Appendix C Drawings

# **DEVELOPMENT STATISTICS**

# YIELD CALCULATION

| UNIT TYPE               | NO. UNITS | % OF UNITS |
|-------------------------|-----------|------------|
|                         |           |            |
| 1BED                    | 12        | 7.7%       |
| 2BED                    | 83        | 53.2%      |
| 2BED ST                 | 27        | 17.3%      |
| 3BED                    | 11        | 7.1%       |
| 3BED ST                 | 6         | 3.8%       |
| COMMERCIAL              | 13        | 8.3%       |
| STUDIO                  | 4         | 2.6%       |
| TOTAL NO. OF UNITS: 156 | 156       | 100.0%     |
|                         |           |            |

|                                                                                                                                                                                                                                                 | PARKING                                                                                                                                                                                  | SCH                                                                                                                                                           | EDULE           |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
| TYPE                                                                                                                                                                                                                                            |                                                                                                                                                                                          | DIMEN<br>ENGTH                                                                                                                                                | ISIONS<br>WIDTH | NUMBER OF<br>SPACES |
| BASEMENT 2                                                                                                                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                               |                 |                     |
| Residential                                                                                                                                                                                                                                     |                                                                                                                                                                                          | 5400                                                                                                                                                          | 2400            | 142                 |
| Residential - Tandem                                                                                                                                                                                                                            |                                                                                                                                                                                          | 5400                                                                                                                                                          | 2400            | 6                   |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                          | 5400                                                                                                                                                          | 2400            | 148                 |
| BASEMENT 1                                                                                                                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                               |                 |                     |
| Residential                                                                                                                                                                                                                                     |                                                                                                                                                                                          | 5400                                                                                                                                                          | 2400            | 106                 |
| Retail                                                                                                                                                                                                                                          |                                                                                                                                                                                          | 5400                                                                                                                                                          | 2400            | 16                  |
| Residential - Tandem                                                                                                                                                                                                                            |                                                                                                                                                                                          | 5400                                                                                                                                                          | 2400<br>2400    | <u> </u>            |
| Residential Adaptable                                                                                                                                                                                                                           |                                                                                                                                                                                          | 5400                                                                                                                                                          | 2400            | 139                 |
| LOWER GROUND                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                               |                 |                     |
| Residential                                                                                                                                                                                                                                     |                                                                                                                                                                                          | 5400                                                                                                                                                          | 2400            | 65                  |
| Residential Adaptable                                                                                                                                                                                                                           |                                                                                                                                                                                          | 5400                                                                                                                                                          | 2400            | 11                  |
| UPPER GROUND                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                               |                 | 76                  |
| EVO Dedicated Carpark                                                                                                                                                                                                                           |                                                                                                                                                                                          | 5400                                                                                                                                                          | 3000            | 1                   |
|                                                                                                                                                                                                                                                 | I                                                                                                                                                                                        |                                                                                                                                                               | 1               | 1                   |
| TOTAL NO. OF CARS                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                               |                 | 364                 |
| MO                                                                                                                                                                                                                                              | TOCYCLE                                                                                                                                                                                  | SCHE                                                                                                                                                          | EDULE           |                     |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                          |                                                                                                                                                               | ISIONS          | NUMBER OF           |
| TYPE                                                                                                                                                                                                                                            |                                                                                                                                                                                          | ENGTH                                                                                                                                                         | WIDTH           | SPACES              |
| LOWER GROUND                                                                                                                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                               |                 |                     |
| MOTORCYCLE PARKING                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                               |                 | 11                  |
| TOTAL NO. OF CARS                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                               |                 | 11                  |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                          |                                                                                                                                                               |                 |                     |
| ADAPTABLE UNI                                                                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                               |                 |                     |
|                                                                                                                                                                                                                                                 | T SCHEDULE                                                                                                                                                                               | <u> </u>                                                                                                                                                      | ]               |                     |
| TYPE                                                                                                                                                                                                                                            |                                                                                                                                                                                          |                                                                                                                                                               | ]               |                     |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                          |                                                                                                                                                               | ]<br>]          |                     |
| TYPE<br>1 BED<br>2 BED                                                                                                                                                                                                                          | UNI<br>3<br>13                                                                                                                                                                           | rs                                                                                                                                                            | ]               |                     |
| TYPE<br>1 BED<br>2 BED<br>3 BED                                                                                                                                                                                                                 | UNIT<br>3<br>13<br>6                                                                                                                                                                     | rs                                                                                                                                                            | ]               |                     |
| TYPE<br>1 BED<br>2 BED                                                                                                                                                                                                                          | UNI<br>3<br>13                                                                                                                                                                           | rs                                                                                                                                                            |                 |                     |
| TYPE<br>1 BED<br>2 BED<br>3 BED                                                                                                                                                                                                                 | UNI<br>3<br>13<br>6<br><b>22</b>                                                                                                                                                         | ΓS                                                                                                                                                            |                 |                     |
| TYPE<br>1 BED<br>2 BED<br>3 BED<br>TOTAL                                                                                                                                                                                                        | UNI<br>3<br>13<br>6<br><b>22</b>                                                                                                                                                         | CE                                                                                                                                                            |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL OI                                                                                                                                                                                                        | UNI<br>3<br>13<br>6<br>22<br>PEN SPAC                                                                                                                                                    | CE                                                                                                                                                            |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL OI Level UPPER GROUND                                                                                                                                                                                     | UNIT         3         13         6         22         PEN SPAC         Area         437 m²                                                                                              | CE                                                                                                                                                            |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL O Level UPPER GROUND LEVEL 1                                                                                                                                                                              | UNI<br>3<br>13<br>6<br>22<br>PEN SPAC<br>Area<br>437 m <sup>2</sup><br>251 m <sup>2</sup>                                                                                                | CE                                                                                                                                                            |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL O Level UPPER GROUND                                                                                                                                                                                      | UNIT         3         13         6         22         PEN SPAC         Area         437 m²                                                                                              | CE                                                                                                                                                            |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL O Level UPPER GROUND LEVEL 1 LEVEL 1 LEVEL 2                                                                                                                                                              | UNI<br>3<br>13<br>6<br>22<br>PEN SPAC<br>Area<br>437 m <sup>2</sup><br>251 m <sup>2</sup><br>187 m <sup>2</sup>                                                                          | CE                                                                                                                                                            |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL OI Level UPPER GROUND LEVEL 1 LEVEL 1 LEVEL 2 Grand total                                                                                                                                                 | UNIT         3         13         6         22         PEN SPAC         Area         437 m²         251 m²         187 m²         291 m²         1166 m²                                 | CE                                                                                                                                                            |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL OF Level UPPER GROUND LEVEL 1 LEVEL 1 LEVEL 2 Grand total LANDSCAP                                                                                                                                        | UNIT<br>3<br>13<br>6<br>22<br>PEN SPAC<br>Area<br>437 m <sup>2</sup><br>251 m <sup>2</sup><br>187 m <sup>2</sup><br>291 m <sup>2</sup><br>1166 m <sup>2</sup><br>PE AREA                 |                                                                                                                                                               |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL O Level UPPER GROUND LEVEL 1 LEVEL 1 LEVEL 2 Grand total                                                                                                                                                  | UNIT         3         13         6         22         PEN SPAC         Area         437 m²         251 m²         187 m²         291 m²         1166 m²                                 |                                                                                                                                                               |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL OI Level UPPER GROUND LEVEL 1 LEVEL 1 LEVEL 2 Grand total LEVEL LOWER GROUND                                                                                                                              | UNIT<br>3<br>13<br>6<br>22<br>PEN SPAC<br>Area<br>437 m <sup>2</sup><br>251 m <sup>2</sup><br>187 m <sup>2</sup><br>291 m <sup>2</sup><br>1166 m <sup>2</sup><br>PE AREA                 |                                                                                                                                                               |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL O Level UPPER GROUND LEVEL 1 LEVEL 1 LEVEL 2 Grand total LEVEL LOWER GROUND UPPER GROUND UPPER GROUND                                                                                                     | UNIT<br>3<br>13<br>6<br>22<br>PEN SPAC<br>Area<br>437 m <sup>2</sup><br>251 m <sup>2</sup><br>187 m <sup>2</sup><br>291 m <sup>2</sup><br>1166 m <sup>2</sup><br>PE AREA                 | CE<br>A<br>14 m <sup>2</sup><br>960 m <sup>2</sup>                                                                                                            |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL O Level UPPER GROUND LEVEL 1 LEVEL 1 LEVEL 2 Grand total LEVEL LOWER GROUND UPPER GROUND UPPER GROUND UPPER GROUND LEVEL 1                                                                                | UNIT<br>3<br>13<br>6<br>22<br>PEN SPAC<br>Area<br>437 m <sup>2</sup><br>251 m <sup>2</sup><br>187 m <sup>2</sup><br>291 m <sup>2</sup><br>1166 m <sup>2</sup><br>PE AREA                 | CE<br>A<br>14 m <sup>2</sup><br>960 m <sup>2</sup><br>164 m <sup>2</sup>                                                                                      |                 |                     |
| TYPE<br>1 BED<br>2 BED<br>3 BED<br>TOTAL<br>COMMUNAL OI<br>Level<br>UPPER GROUND<br>LEVEL 1<br>LEVEL 1<br>LEVEL 2<br>Grand total<br>LEVEL<br>LOWER GROUND<br>UPPER GROUND<br>UPPER GROUND<br>UPPER GROUND<br>LEVEL 1<br>LEVEL 2                 | UNIT<br>3<br>13<br>6<br>22<br>PEN SPAC<br>Area<br>437 m <sup>2</sup><br>251 m <sup>2</sup><br>187 m <sup>2</sup><br>291 m <sup>2</sup><br>1166 m <sup>2</sup><br>PE AREA                 | CE<br>A<br>14 m <sup>2</sup><br>960 m <sup>2</sup><br>164 m <sup>2</sup><br>302 m <sup>2</sup>                                                                |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL O Level UPPER GROUND LEVEL 1 LEVEL 1 LEVEL 2 Grand total LEVEL LOWER GROUND UPPER GROUND LEVEL LOWER GROUND LEVEL LOWER GROUND LEVEL 1 LEVEL 2 LEVEL 3                                                    | UNIT<br>3<br>13<br>6<br>22<br>PEN SPAC<br>Area<br>437 m <sup>2</sup><br>251 m <sup>2</sup><br>187 m <sup>2</sup><br>291 m <sup>2</sup><br>1166 m <sup>2</sup><br>PE AREA                 | CE<br>                                                                                                                                                        |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL O Level UPPER GROUND LEVEL 1 LEVEL 1 LEVEL 2 Grand total LEVEL LOWER GROUND UPPER GROUND UPPER GROUND LEVEL LOWER GROUND LEVEL LOWER GROUND LEVEL 3 LEVEL 3 LEVEL 4                                       | UNIT<br>3<br>13<br>6<br>22<br>PEN SPAC<br>Area<br>437 m <sup>2</sup><br>251 m <sup>2</sup><br>187 m <sup>2</sup><br>291 m <sup>2</sup><br>1166 m <sup>2</sup><br>PE AREA                 | CE                                                                                                                                                            |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL O Level UPPER GROUND LEVEL 1 LEVEL 1 LEVEL 2 Grand total LEVEL LOWER GROUND UPPER GROUND LEVEL LOWER GROUND LEVEL LOWER GROUND LEVEL LEVEL LOWER GROUND LEVEL 1 LEVEL LEVEL LEVEL LEVEL 3 LEVEL 4 LEVEL 5 | UNIT<br>3<br>13<br>6<br>22<br>PEN SPAC<br>Area<br>437 m <sup>2</sup><br>251 m <sup>2</sup><br>187 m <sup>2</sup><br>291 m <sup>2</sup><br>1166 m <sup>2</sup><br>PE AREA                 | CE<br>A<br>14 m <sup>2</sup><br>960 m <sup>2</sup><br>164 m <sup>2</sup><br>302 m <sup>2</sup><br>13 m <sup>2</sup><br>13 m <sup>2</sup><br>37 m <sup>2</sup> |                 |                     |
| TYPE 1 BED 2 BED 3 BED TOTAL COMMUNAL O Level UPPER GROUND LEVEL 1 LEVEL 1 LEVEL 2 Grand total UPPER GROUND UPPER GROUND UPPER GROUND UPPER GROUND LEVEL 1 LEVEL LOWER GROUND LEVEL 2 LEVEL LOWER GROUND UPPER GROUND LEVEL 4                   | UNIT<br>3<br>13<br>6<br>22<br>PEN SPAC<br>Area<br>437 m <sup>2</sup><br>251 m <sup>2</sup><br>187 m <sup>2</sup><br>291 m <sup>2</sup><br>1166 m <sup>2</sup><br>PE AREA<br>AREA<br>AREA | CE                                                                                                                                                            |                 |                     |

| AREA<br>641 m <sup>2</sup><br>641 m <sup>2</sup><br>641 m <sup>2</sup><br>718 m <sup>2</sup><br>1087 m <sup>2</sup><br>1806 m <sup>2</sup><br>1806 m <sup>2</sup><br>610 m <sup>2</sup><br>112 m <sup>2</sup><br>722 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>2398 m <sup>2</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 641 m <sup>2</sup><br>718 m <sup>2</sup><br>1087 m <sup>2</sup><br>1806 m <sup>2</sup><br>610 m <sup>2</sup><br>610 m <sup>2</sup><br>722 m <sup>2</sup><br>722 m <sup>2</sup><br>181 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>           |
| 641 m <sup>2</sup><br>718 m <sup>2</sup><br>1087 m <sup>2</sup><br>1806 m <sup>2</sup><br>610 m <sup>2</sup><br>610 m <sup>2</sup><br>722 m <sup>2</sup><br>722 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                 |
| 641 m <sup>2</sup><br>718 m <sup>2</sup><br>1087 m <sup>2</sup><br>1806 m <sup>2</sup><br>610 m <sup>2</sup><br>610 m <sup>2</sup><br>722 m <sup>2</sup><br>722 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                 |
| 718 m <sup>2</sup><br>1087 m <sup>2</sup><br>1806 m <sup>2</sup><br>610 m <sup>2</sup><br>112 m <sup>2</sup><br>722 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                             |
| 1087 m <sup>2</sup><br>1806 m <sup>2</sup><br>610 m <sup>2</sup><br>112 m <sup>2</sup><br>722 m <sup>2</sup><br>181 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                                                  |
| 1087 m <sup>2</sup><br>1806 m <sup>2</sup><br>610 m <sup>2</sup><br>112 m <sup>2</sup><br>722 m <sup>2</sup><br>181 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                                                  |
| 1806 m <sup>2</sup><br>610 m <sup>2</sup><br>112 m <sup>2</sup><br>722 m <sup>2</sup><br>181 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                                                    |
| 610 m <sup>2</sup><br>112 m <sup>2</sup><br>722 m <sup>2</sup><br>181 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                                                                           |
| 112 m <sup>2</sup><br>722 m <sup>2</sup><br>181 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                                                                                                 |
| 112 m <sup>2</sup><br>722 m <sup>2</sup><br>181 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                                                                                                 |
| 112 m <sup>2</sup><br>722 m <sup>2</sup><br>181 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                                                                                                 |
| 722 m <sup>2</sup><br>181 m <sup>2</sup><br>1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                                                                                                                       |
| 1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                                                                                                                                                                   |
| 1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                                                                                                                                                                   |
| 1825 m <sup>2</sup><br>347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                                                                                                                                                                   |
| 347 m <sup>2</sup><br>45 m <sup>2</sup><br>2398 m <sup>2</sup>                                                                                                                                                                                                                                          |
| 45 m²<br>2398 m²                                                                                                                                                                                                                                                                                        |
| 2398 m²                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                         |
| 101                                                                                                                                                                                                                                                                                                     |
| 1012                                                                                                                                                                                                                                                                                                    |
| 181 m²                                                                                                                                                                                                                                                                                                  |
| 1825 m <sup>2</sup>                                                                                                                                                                                                                                                                                     |
| 348 m <sup>2</sup>                                                                                                                                                                                                                                                                                      |
| 45 m <sup>2</sup><br>2399 m <sup>2</sup>                                                                                                                                                                                                                                                                |
| 2399 11                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                         |
| 181 m²                                                                                                                                                                                                                                                                                                  |
| 1825 m <sup>2</sup>                                                                                                                                                                                                                                                                                     |
| 348 m <sup>2</sup>                                                                                                                                                                                                                                                                                      |
| 45 m²<br>2399 m²                                                                                                                                                                                                                                                                                        |
| 2399 11                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                         |
| 181 m²                                                                                                                                                                                                                                                                                                  |
| 1128 m²                                                                                                                                                                                                                                                                                                 |
| 258 m²                                                                                                                                                                                                                                                                                                  |
| 110 m <sup>2</sup>                                                                                                                                                                                                                                                                                      |
| 362 m <sup>2</sup>                                                                                                                                                                                                                                                                                      |
| 45 m²                                                                                                                                                                                                                                                                                                   |
| 2085 m <sup>2</sup>                                                                                                                                                                                                                                                                                     |
| 2085 m²                                                                                                                                                                                                                                                                                                 |
| 2085 m²                                                                                                                                                                                                                                                                                                 |
| 1385 m²                                                                                                                                                                                                                                                                                                 |
| 2085 m <sup>2</sup><br>1385 m <sup>2</sup><br>377 m <sup>2</sup>                                                                                                                                                                                                                                        |
| 1385 m²                                                                                                                                                                                                                                                                                                 |
| 1385 m <sup>2</sup><br>377 m <sup>2</sup>                                                                                                                                                                                                                                                               |
| 1385 m²<br>377 m²<br>1762 m²                                                                                                                                                                                                                                                                            |
| 1385 m <sup>2</sup><br>377 m <sup>2</sup>                                                                                                                                                                                                                                                               |
| -                                                                                                                                                                                                                                                                                                       |







#### GFA EXCLUDES: CARPARK, LANDSCAPE, AND BALCONIES

| AREA SCHEDUL | E - GFA | ARE      |
|--------------|---------|----------|
| NAME         | AREA    |          |
|              |         |          |
| BASEMENT 2   |         | STUDIO   |
| SERVICES     | 22 m²   |          |
|              | 22 m²   |          |
|              |         | LEVEL 5  |
| BASEMENT 1   |         | 1BED     |
| SERVICES     | 22 m²   | 2BED     |
|              | 22 m²   | 2BED ST  |
|              |         | 3BED     |
| LOWER GROUND |         | 3BED ST  |
| COMMERCIAL   | 641 m²  | CORRIDO  |
| POS          | 180 m²  | POS      |
| SERVICES     | 322 m²  | SERVICES |
|              | 1143 m² | STUDIO   |
|              |         |          |
| UPPER GROUND |         |          |
| AMENITY      | 49 m²   | LEVEL 6  |

|              | 43111   |
|--------------|---------|
| COMMERCIAL   | 718 m²  |
| LIFT / STAIR | 100 m²  |
| POS          | 122 m²  |
| RETAIL       | 1087 m² |
| SERVICES     | 163 m²  |
| WASTE        | 218 m²  |
|              | 2458 m² |
|              |         |

112 m²

273 m²

264 m² 33 m²

151 m² 1443 m²

| AREA SCHEDULE - GFA |        |  |  |  |  |
|---------------------|--------|--|--|--|--|
| NAME                | AREA   |  |  |  |  |
|                     |        |  |  |  |  |
| STUDIO              | 45 m   |  |  |  |  |
|                     | 3062 m |  |  |  |  |
|                     |        |  |  |  |  |
| LEVEL 5             |        |  |  |  |  |
| 1BED                | 181 m  |  |  |  |  |
| 2BED                | 1128 m |  |  |  |  |
| 2BED ST             | 258 m  |  |  |  |  |
|                     | 110    |  |  |  |  |

| 3BED     | 110 m <sup>2</sup>  |
|----------|---------------------|
| 3BED ST  | 362 m <sup>2</sup>  |
| CORRIDOR | 493 m <sup>2</sup>  |
| POS      | 77 m <sup>2</sup>   |
| SERVICES | 43 m <sup>2</sup>   |
| STUDIO   | 45 m <sup>2</sup>   |
|          | 2698 m <sup>2</sup> |
|          |                     |

| 49 m²   | LEVEL 6   |          |
|---------|-----------|----------|
| 718 m²  | 2BED ST   | 1385 m²  |
| 100 m²  | 3BED ST   | 377 m²   |
| 122 m²  | CORRIDOR  | 323 m²   |
| 1087 m² | SERVICES  | 42 m²    |
| 163 m²  |           | 2126 m²  |
| 218 m²  |           |          |
| 2458 m² | LEVEL 7   |          |
|         | 2BED ST   | 1034 m²  |
|         |           | 1034 m²  |
| 610 m²  | TOTAL GFA | 20131 m² |

#### LEVEL 2

LEVEL 1 2BED

3BED

POS SERVICES

AMENITY

CORRIDOR

| 1BED     | 181 m²  |
|----------|---------|
| 2BED     | 1825 m² |
| 3BED     | 347 m²  |
| CORRIDOR | 513 m²  |
| POS      | 110 m²  |
| SERVICES | 44 m²   |
| STUDIO   | 45 m²   |
|          | 3065 m² |

#### LEVEL 3

| 1BED     | 181 m²  |
|----------|---------|
| 2BED     | 1825 m² |
| 3BED     | 348 m²  |
| CORRIDOR | 505 m²  |
| POS      | 110 m²  |
| SERVICES | 43 m²   |
| STUDIO   | 45 m²   |
|          | 3057 m² |

#### LEVEL 4

| 1BED     | 181 m²             |
|----------|--------------------|
| 2BED     | 1825 m²            |
| 3BED     | 348 m²             |
| CORRIDOR | 510 m²             |
| POS      | 110 m <sup>2</sup> |
| SERVICES | 43 m²              |
|          |                    |

@ A1

05.03.2024



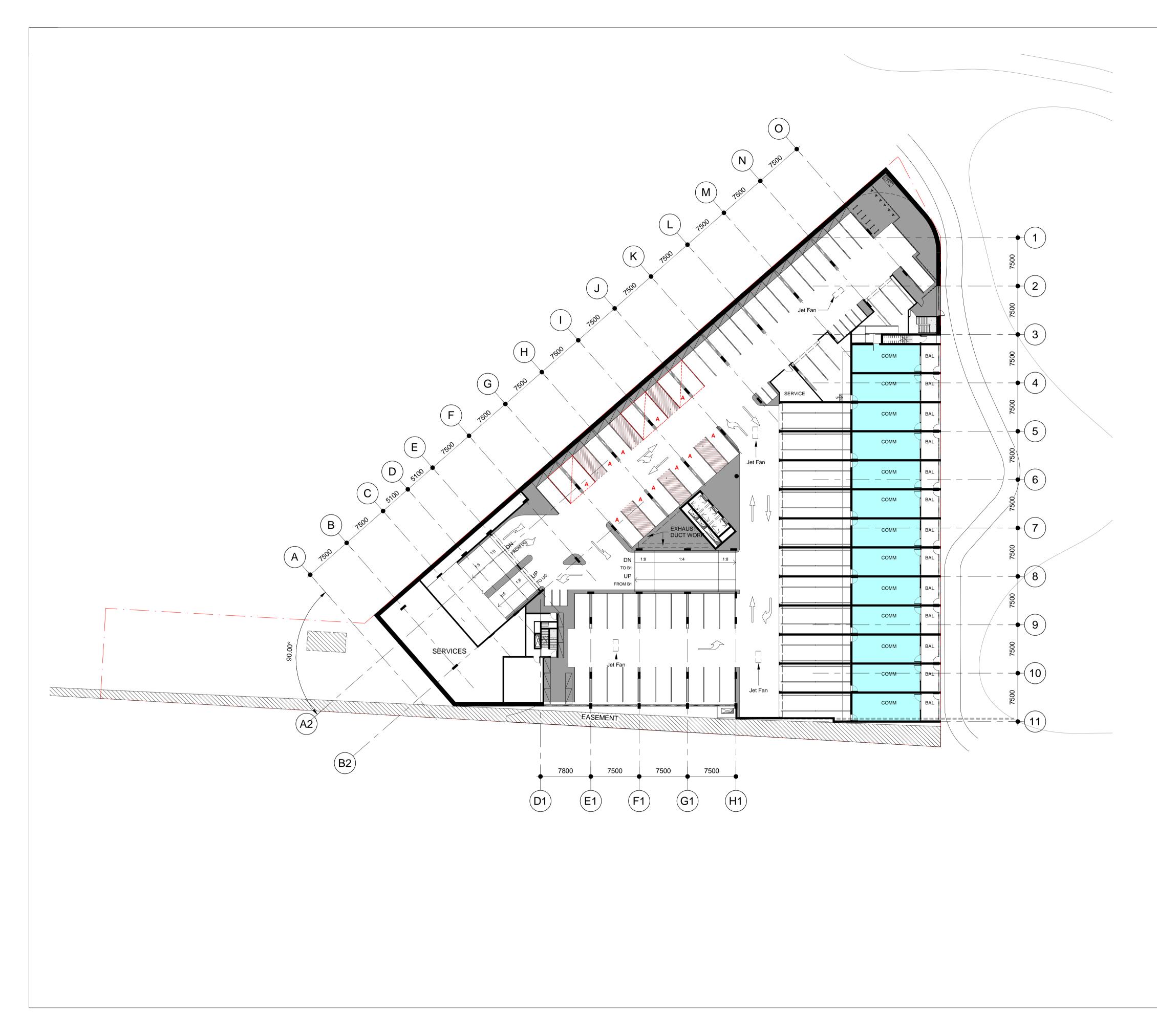
# Worth Street - Mixed Use

BLOCK 09 SECTION 132 CASEY ACT 2913

 $\bigcirc$ 

Project

Drawing Number:


Scale:

Date:

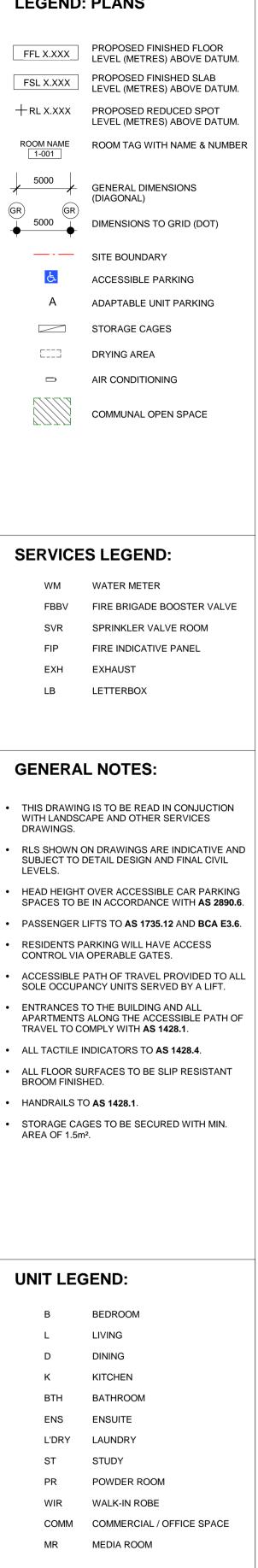
5 ACAT MEDIATION

#### Drawing Title DEVELOPMENT STATISTICS

DA-01-02






Cox Architecture www.coxarchitecture.com.au

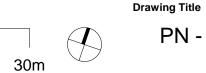
Scale 1:300 0 3m 6m

15m

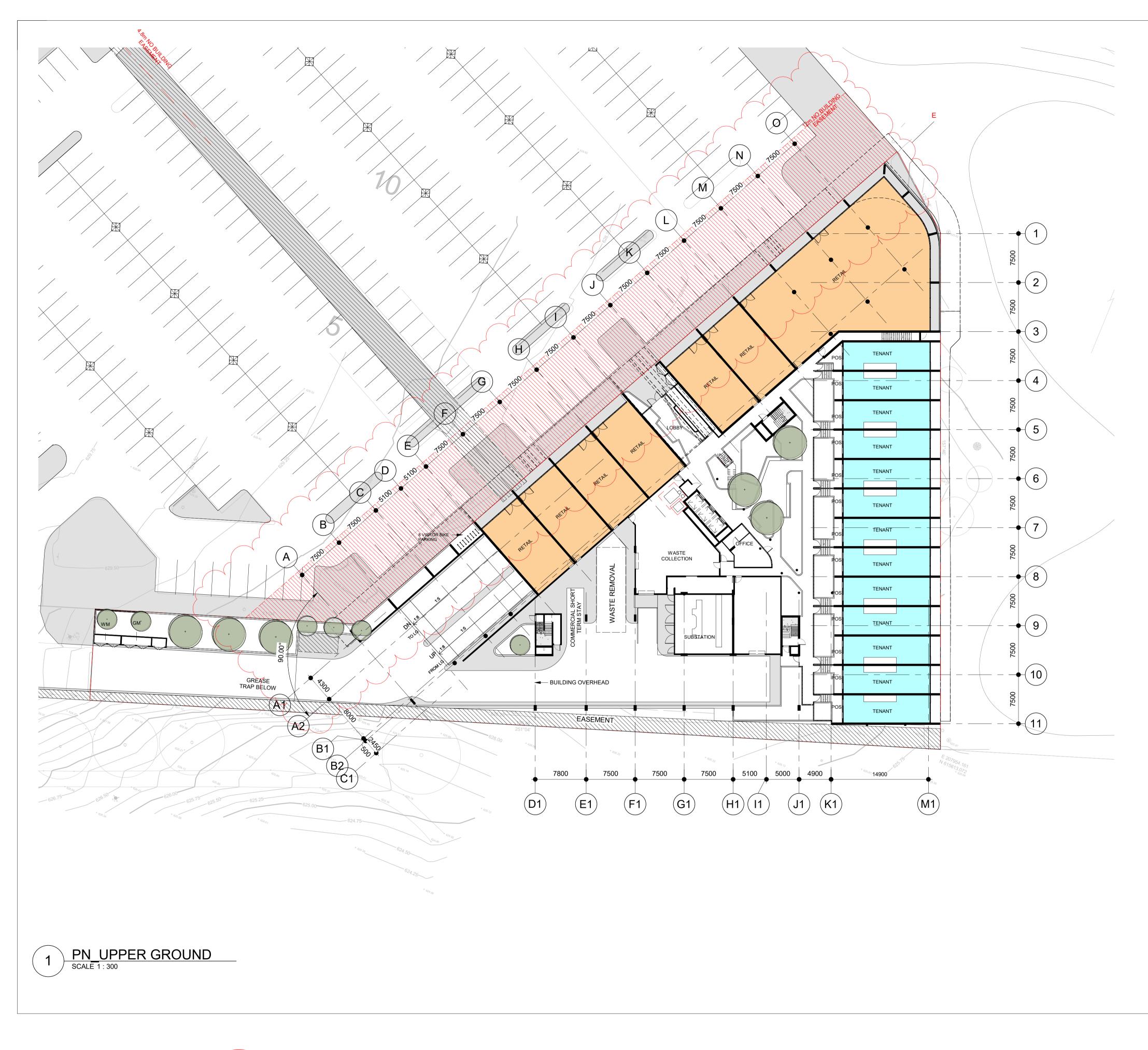
# AREA TYPE COMMERCIAL

## LEGEND: PLANS




Project

# Worth Street - Mixed Use


#### BLOCK 09 SECTION 132 CASEY ACT 2913

Scale: 1 : 300 @ A1 Date: 08.08.2023 Revision: 5 Update Accessibility

Drawing Number:



PN - LOWER GROUND LEVEL

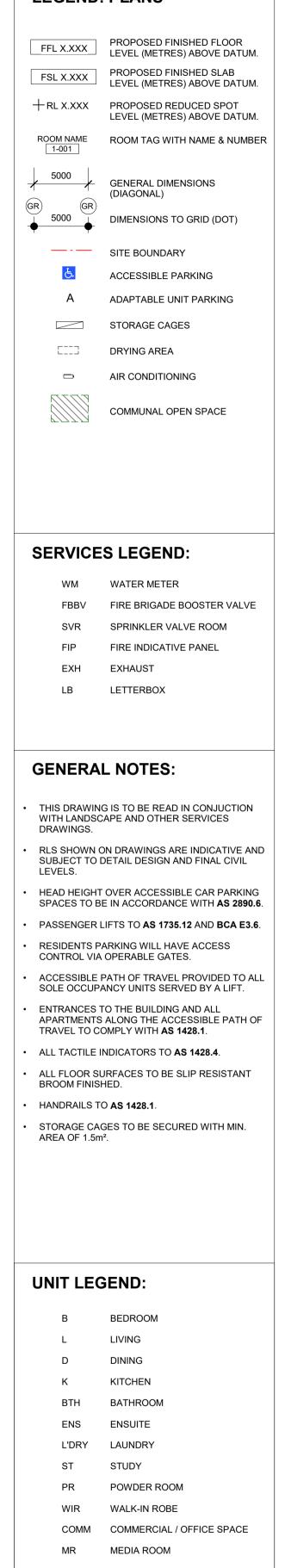






Cox Architecture www.coxarchitecture.com.au




Scale 1:300 0 3m 6m

15m





## LEGEND: PLANS



A. REMOVE LEVEL B. FURTHER ARTICULATE FACADE C. REMOVE LOFT UNITS D. RETAIL AWNING ARTICULATED E. EASEMENT AND DEEP ROOT PLANTING

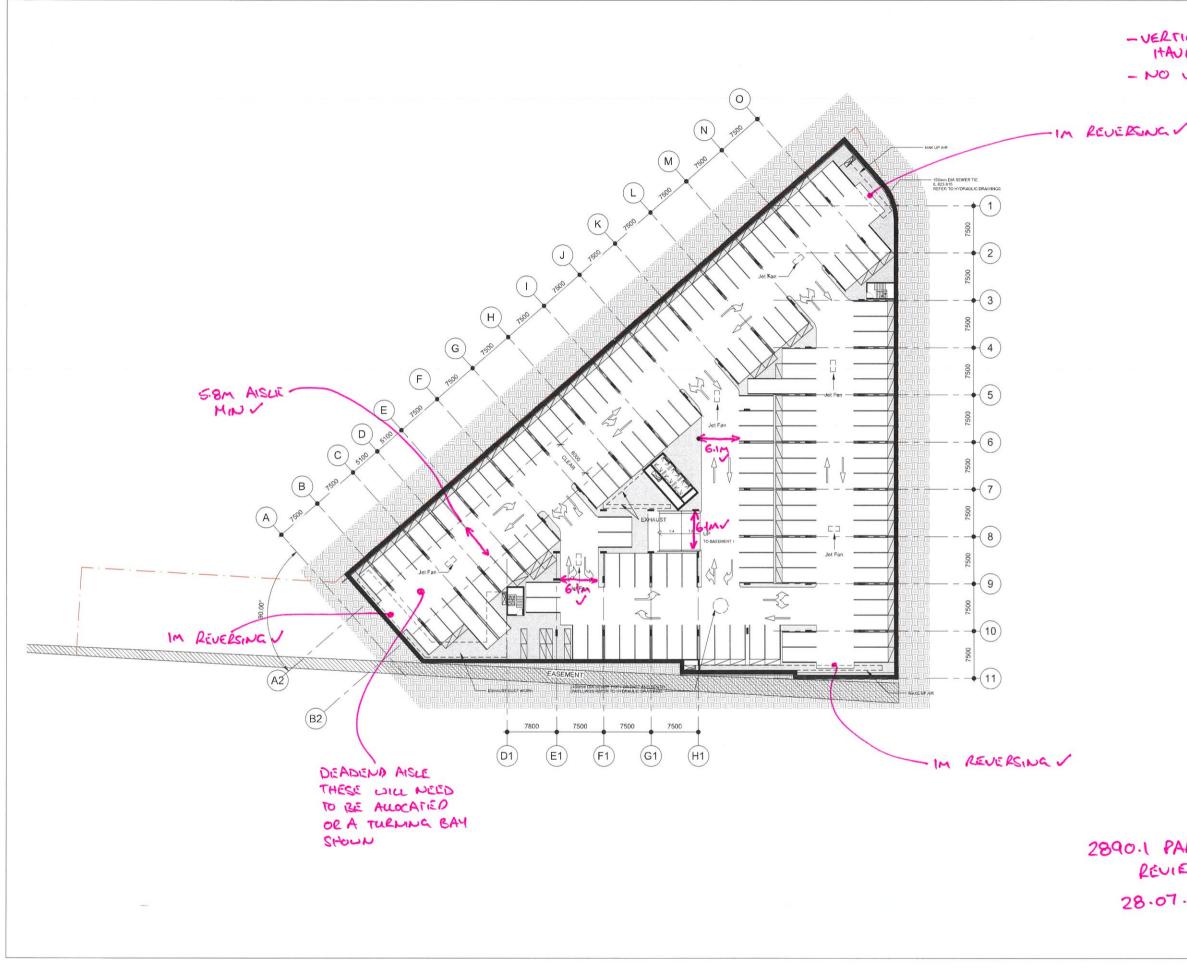
#### Project

Drawing Title

#### Worth Street - Mixed Use

BLOCK 09 SECTION 132 CASEY ACT 2913

Scale: As indicated @ A1 Date: 05.03.2024 Revision: 5 ACAT MEDIATION


Drawing Number:

(30m

PN - UPPER GROUND LEVEL

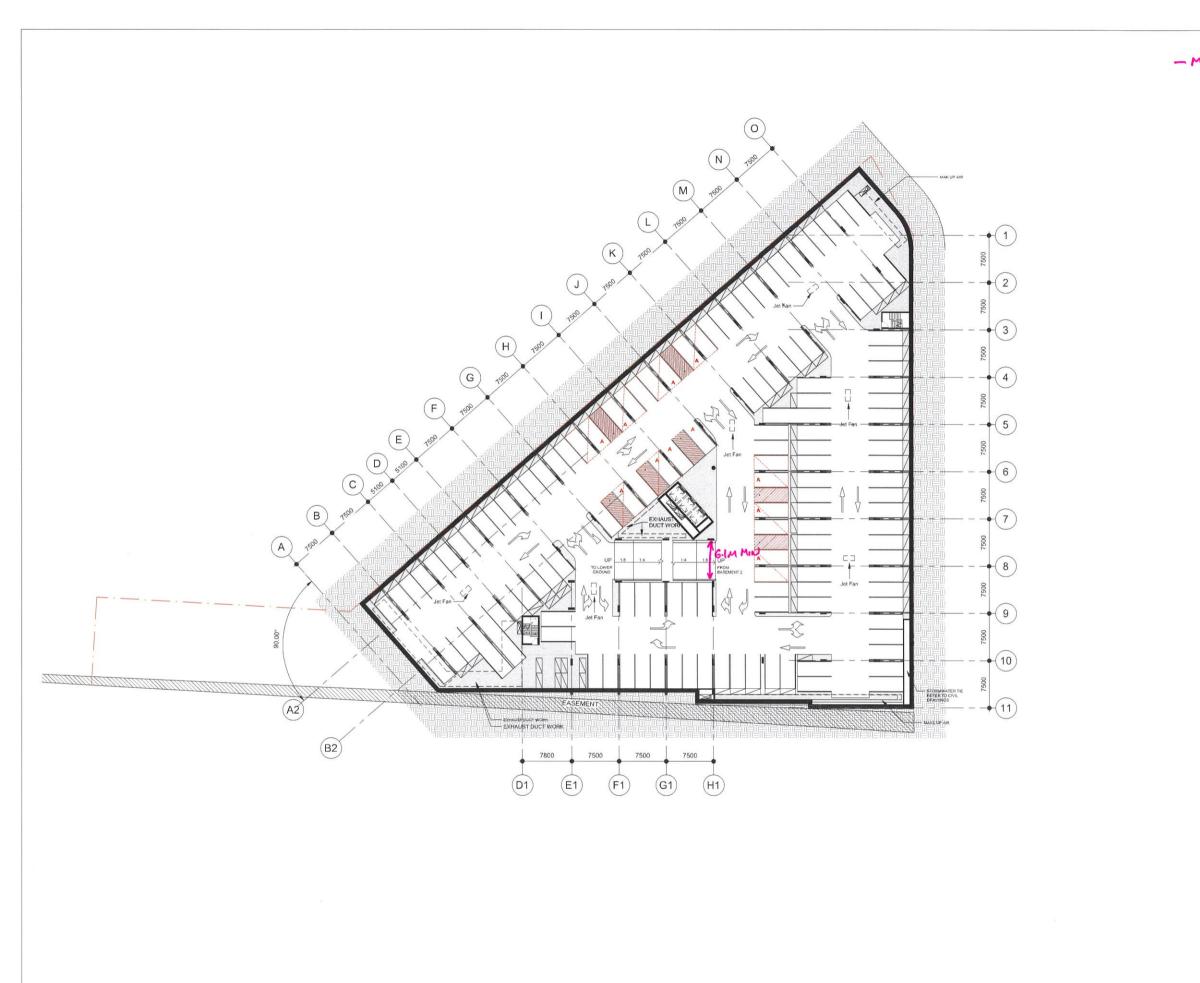


Appendix D Carpark Compliance Check



Cox Architecture www.coxarchitecture.com.au

Scale 1:300


| 1                 | 5000                                                                                                                                                                         |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | GENERAL DIMENSIONS<br>(DIAGONAL)                                                                                                                                             |
|                   | 5000 DIMENSIONS TO GRID (DOT)                                                                                                                                                |
|                   | SITE BOUNDARY                                                                                                                                                                |
|                   | A ACCESSIBLE PARKING                                                                                                                                                         |
|                   | STORAGE CAGES                                                                                                                                                                |
|                   | CTT DRYING AREA                                                                                                                                                              |
|                   |                                                                                                                                                                              |
|                   | COMMUNAL OPEN SPACE                                                                                                                                                          |
|                   | SERVICES LEGEND:<br>WM WATER METER<br>FBBV FIRE BRIGADE BOOSTER VALVE                                                                                                        |
|                   | SVR SPRINKLER VALVE ROOM<br>FIP FIRE INDICATIVE PANEL                                                                                                                        |
|                   | EXH EXHAUST                                                                                                                                                                  |
|                   | LB LETTERBOX                                                                                                                                                                 |
|                   | GENERAL NOTES:                                                                                                                                                               |
|                   | <ul> <li>THIS DRAWING IS TO BE READ IN CONJUCTION<br/>WITH LANDSCAPE AND OTHER SERVICES<br/>DRAWINGS.</li> </ul>                                                             |
|                   | RLS SHOWN ON DRAWINGS ARE INDICATIVE AND<br>SUBJECT TO DETAIL DESIGN AND FINAL CIVIL<br>LEVELS.                                                                              |
|                   | LEVELS. HEAD HEIGHT OVER ACCESSIBLE CAR PARKING<br>SPACES TO BE IN ACCORDANCE WITH AS 2890.6. PASSENGER LIFTS TO AS 1735.12 AND BCA E3.6. RESIDENTS PARKING WILL HAVE ACCESS |
|                   | CONTROL VIA OPERABLE GATES.     ACCESSIBLE PATH OF TRAVEL PROVIDED TO ALL                                                                                                    |
|                   | SOLE OCCUPANCY UNITS SERVED BY A LIFT.<br>• ENTRANCES TO THE BUILDING AND ALL<br>APARTMENTS ALONG THE ACCESSBILE PATH OF<br>TRAVEL TO COMPLY WITH AS 1428.1.                 |
|                   | ALL TACTILE INDICATORS TO AS 1428.4.     ALL FLOOR SURFACES TO BE SLIP RESISTANT BROOM FINISHED.                                                                             |
|                   | · HANDRAILS TO AS 1428.1.                                                                                                                                                    |
|                   | <ul> <li>STORAGE CAGES TO BE SECURED WITH MIN.<br/>AREA OF 1.5m*</li> </ul>                                                                                                  |
|                   | UNIT LEGEND:                                                                                                                                                                 |
|                   | B BEDROOM                                                                                                                                                                    |
|                   | L LIVING<br>D DINING                                                                                                                                                         |
|                   | K KITCHEN                                                                                                                                                                    |
| ARKING COMPLIANCE | BTH BATHROOM<br>ENS ENSUITE                                                                                                                                                  |
| EW                | L'DRY LAUNDRY                                                                                                                                                                |
|                   | ST STUDY<br>PR POWDER ROOM                                                                                                                                                   |
|                   | WIR WALK-IN ROBE                                                                                                                                                             |
| -2023             | COMM COMMERCIAL / OFFICE SPACE                                                                                                                                               |

BLOCK 09 SECTION 132 CASEY ACT 2913 ate: 21.07.2023 evision: 4 DRAFT DA FOR REVIEW



Drawing Tit

PN - BASEMENT 2



Scale 1:300

Cox Architecture www.coxarchitecture.com.au

#### -MIRROR OF BASEMENT2

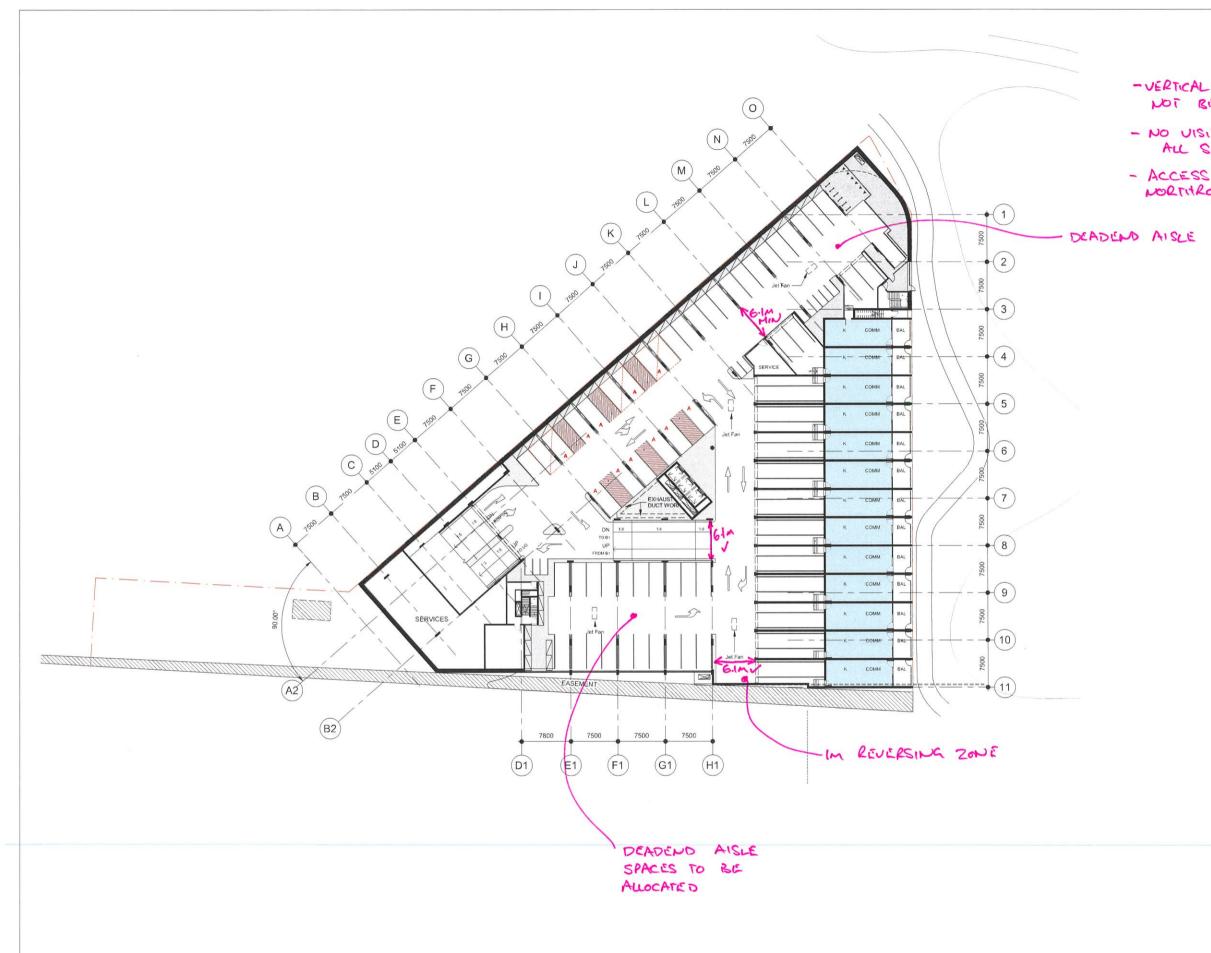


Project

#### Worth Street - Mixed Use

BLOCK 09 SECTION 132 CASEY ACT 2913 
 Scale:
 1:300 @ A1

 Date:
 21.07.2023


 Revision:
 4

 DRAFT DA FOR REVIEW



30m

PN - BASEMENT 1



Jega. KGCAPITOL COX Cox Architecture.com.au

Scale 1:300

| AREA TYPE           | LEGEND: PLANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADAPTIVE COMMERCIAL | PROPOSED FINISHED FLOOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | LEVEL (METRES) ABOVE DATUM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PANCES HAVE         | LEVEL (METRES) ABOVE DATUM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SESSED              | + RL X.XXX PROPOSED REDUCED SPOT<br>LEVEL (METRES) ABOVE DATUM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PACES SHOWN         | ROOM NAME ROOM TAG WITH NAME & NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| s 2.4m              | GENERAL DIMENSIONS<br>(DIAGONAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | GR GR DIMENSIONS TO GRID (DOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ancements by        | SITE BOUNDARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     | ACCESSIBLE PARKING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     | A ADAPTABLE UNIT PARKING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     | STORAGE CAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     | CIII DRYING AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     | COMMUNAL OPEN SPACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | SERVICES LEGEND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | FBBV FIRE BRIGADE BOOSTER VALVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     | SVR SPRINKLER VALVE ROOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     | FIP FIRE INDICATIVE PANEL<br>EXH EXHAUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     | LB LETTERBOX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | <ul> <li>RLS SHOWN ON DRAWINGS ARE INDICATIVE AND<br/>SUBJECT TO DETAIL DESIGN AND FINAL CIVIL<br/>LEVELS</li> <li>HEAD HEIGHT OVER ACCESSIBLE CAR PARKING<br/>SPACES TO BE IN ACCORDANCE WITH AS 2890.6.</li> <li>PASSENGER LIFTS TO AS 1735.12 AND BCA E3.6.</li> <li>RESIDENTS PARKING WILL HAVE ACCESS<br/>CONTROL VIA OPERABLE GATES.</li> <li>ACCESSIBLE PATH OF TRAVEL PROVIDED TO ALL<br/>SOLE OCCUPANCY UNITS SERVED BY A LIFT.</li> <li>ENTRANCES TO THE BUILDING AND ALL<br/>PARTMENTS ALONG THE ACCESSIBLE PATH OF<br/>TRAVEL TO COMPLY WITH AS 1428.1.</li> <li>ALL TACTILE INDICATORS TO AS 1428.4.</li> <li>ALL FLOOR SURFACES TO BE SLIP RESISTANT<br/>BROOM FINISHED.</li> <li>HANDRAILS TO AS 1428.1.</li> <li>STORAGE CACES TO BE SECURED WITH MIN.<br/>AREA OF 1.5m<sup>3</sup>.</li> </ul> |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     | UNIT LEGEND:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | B BEDROOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     | B BEDROOM<br>L LIVING<br>D DINING<br>K KITCHEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     | B BEDROOM<br>L LIVING<br>D DINING<br>K KITCHEN<br>BTH BATHROOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     | B BEDROOM<br>L LIVING<br>D DINING<br>K KITCHEN<br>BTH BATHROOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     | B BEDROOM<br>L LIVING<br>D DINING<br>K KITCHEN<br>BTH BATHROOM<br>ENS ENSUITE<br>L'DRY LAUNDRY<br>ST STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | B BEDROOM<br>L LIVING<br>D DINING<br>K KITCHEN<br>BTH BATHROOM<br>ENS ENSUITE<br>LÜRY LAUNDRY<br>ST STUDY<br>PR POWDER ROOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | B BEDROOM<br>L LIVING<br>D DINING<br>K KITCHEN<br>BTH BATHROOM<br>ENS ENSUITE<br>L'DRY LAUNDRY<br>ST STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | B BEDROOM<br>L LIVING<br>D DINING<br>K KITCHEN<br>BTH BATHROOM<br>ENS ENSUITE<br>L'DRY LAUNDRY<br>ST STUDY<br>PR POWDER ROOM<br>WIR WALK-IN ROBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Project

Drawing Title

Worth Street - Mixed Use

BLOCK 09 SECTION 132 CASEY ACT 2913 
 Scale:
 1:300 @ A1

 Date:
 21.07.2023

 Revision:
 4

 DRAFT DA FOR REVIEW

Drawing Numbe



PN - LOWER GROUND LEVEL